FBs-30GM

FBs-30GM Motion Controller User Manual

V1.0.1

2014/4/25

FATEK Automation Corporation

Contents

Cor	ntents		2
Tab	le		6
Figu	ure		7
1.	Over	view of FBs-30GM	9
1	.1	Dimensions	9
1	.2	Composition and part names 1	0
1	.3	Status indicators 1	1
1	.4	Terminals1	2
2.	Speci	fication 1	4
3.	Wirir	ng 1	9
3	.1	Wiring example with Yaskawa servo amplifier 1	9
3	.2	Wiring example with Mitsubishi servo amplifier	21
4.	GMM	1on – monitor software	23
4	.1	GMMon Installation	23
4	.2	Setting up a connection	30
	4.2.1	Configure IP address	30
	4.2.2	Change FBs-30GM's IP address	31
4	.3	Functions of GMMon	32
	4.3.1	System function page	32
	4.3.2	Monitor function page	3
	4.3.3	Simulate function page	34
	4.3.4	Files function page	35
	4.3.5	Debug function page	36
5.	Oper	ate and execute motion programs	39
5 FAT	.1 ΈK Au	Relation between FBs PLC and FBs-30GM	39

	5.2	Procedure to execute a motion program	39
	5.2.1	Upload the motion program to FBs-30GM	39
	5.2.2	Configure FBs-30GM's operating parameters	42
	5.2.3	Use the JOG mode to test and adjust machine	43
	5.2.4	Procedure to execute a motion program	44
	5.2.5	Example of FBs PLC ladder diagram	46
	5.3	Control and supervise the operating status	48
	5.4	Troubleshooting	48
	5.5	Trigger input terminals to execute motion programs	49
6.	Oper	ation mode of FBs-30GM	50
	6.1	Auto mode	50
	6.2	JOG mode	50
	6.3	MPG mode	51
	6.4	HOME mode	52
7.	G-co	de and M-code of motion program	60
	7.1	G-code instructions	60
	7.2	M code instructions	87
8.	MAC	RO structure motion language	89
	8.1	Introduction	89
	8.2	File format	89
	8.3	Block format	90
	8.4	Operators	90
	8.5	Statements	91
	8.5.1	Assignment	91
	8.5.2	GOTO	91
	8.5.3	CASE	92

	8.5.4	IF
	8.5.5	REPEAT94
	8.5.6	WHILE
	8.5.7	FOR
	8.5.8	EXIT
	8.5.9	Comment
8	.6	Functions listing
8	.7	Sub-program control 104
	8.7.1	Call methods 104
	8.7.2	Return methods
8	.8	Variable specifications
	8.8.1	MACRO notices
	8.8.2	Global variable
	8.8.3	Local variables
	8.8.4	System variables 108
	8.8.5	MACRO example 109
9.	Exam	pples of motion program
9	.1	S-curve
9	.2	Multi-speed control 112
9	.3	Coupling
9	.4	Trigger input terminals to execute motion program
9	.5	Dynamically change endpoint114
9	.6	Sensor-triggered incremental displacement114
Арр	endix	I (Special relays and registers of FBs PLC)116
Appendix II (FBs-30GM Motion parameters) 123		
I.	Μ	lotion parameters listing 123

II.	Descriptions of motion parameters	129
Append	lix III (Alarm ID.)	159

Table

Table 1: Status indicators	11
Table 2: Upper terminal signals	12
Table 3: Lower terminal signals	13
Table 4: Power input/output specification	14
Table 5: Input signals	14
Table 6: Feedback signals	15
Table 7: Output signals	16
Table 8: RS485 pin description	17
Table 9: Debug variables	38
Table 10: Mode selection description	43
Table 11: Axis JOG feedrate	51
Table 12: Special relays for JOG	51
Table 13: Parameters of home search method and axis home offset	53
Table 14: Home mode and home offset settings	56
Table 15: G-code instructions listing	60
Table 16: G02/G03 circular interpolation	65
Table 17: M function table	87
Table 18: Block format list	90
Table 19: Operator list	90
Table 20: Functions listing table	98
Table 21: Call methods listing table	104
Table 22: Return methods listing table	105
Table 23: Global variable table	107
Table 24: Local variables listing	107
Table 25: Default argument specification	
Table 26: System variables	
Table 27: Control relays of FBs PLC for FBs-30GM	116
Table 28: State relays of FBs PLC for FBs-30GM	118
Table 29: Special registers of FBs PLC for FBs-30GM	119
Table 30: Motion parameters listing table	123
Table 31: Type of servo axis setting	134
Table 32: Interpolation time and command	137

Figure

Figure 1: The dimensions of FBs-30GM	9
Figure 2: Front view of FBs-30GM	10
Figure 3: FBs-30GM terminals	12
Figure 4: Input and output points wiring	16
Figure 5: RS-485 COM port	17
Figure 6: Connection between FBs PLC and FBs-30GM (with CB55)	17
Figure 7: Improper wiring	18
Figure 8: Selecting the grounding wire	18
Figure 9: Wiring example with Yaskawa servo amplifier	19
Figure 10: Connecting feedback signals from Yaskawa servo amplifier	20
Figure 11: Wiring example with Mitsubishi servo amplifier	21
Figure 12: Connecting feedback signals from Mitsubishi servo amplifier	22
Figure 13: Step1 of MacroDev installation procedure	24
Figure 14: Step2 of MacroDev installation procedure	25
Figure 15: Step3 of MacroDev installation procedure	25
Figure 16: Step4 of MacroDev installation procedure	26
Figure 17: Step5 of MacroDev installation procedure	26
Figure 18: Step1 of FATEK GMMon installation procedure	27
Figure 19: Step2 of FATEK GMMon installation procedure	27
Figure 20: Step3 of FATEK GMMon installation procedure	28
Figure 21: Step4 of FATEK GMMon installation procedure	28
Figure 22: Step5 of FATEK GMMon installation procedure	29
Figure 23: Internet Protocol Version 4 (TCP/IPv4) Properties	30
Figure 24: Add a new IP address	31
Figure 25: System function page	32
Figure 26: Monitor function page	33
Figure 27: Simulate function page	34
Figure 28: Files function page	35
Figure 29: Debug function page	36
Figure 30: Relation between FBs PLC and FBs-30GM	39
Figure 31: GMMon Files function	40
Figure 32: Drag and drop the file to upload	40
Figure 33: Use GMMon to set up operating parameters	42
Figure 34: Example of JOG mode ladder diagram	44
Figure 35: Example of Auto mode ladder diagram	45
Figure 36: Example of FBs PLC ladder diagram	47

Figure 37: Example of FBs PLC ladder diagram (cont.)47
Figure 38: V-X diagram of using motor feedback, Pr961=0 and Pr881=053
Figure 39: V-X diagram of using motor feedback, Pr961=0 or 1 and Pr881=L54
Figure 40: V-X diagram of using motor feedback, Pr961=2 and Pr881=L54
Figure 41: V-X diagram of dual feedback, Pr961=0 and Pr881=056
Figure 42: V-X diagram of dual feedback, Pr961=0 or 1 and Pr881=L57
Figure 43: V-X diagram of dual feedback, Pr961=2 and Pr881=L57
Figure 44: G00 positioning example61
Figure 45: G01 linear interpolation example 162
Figure 46: G01 linear interpolation example 263
Figure 47: G02, G03 direction65
Figure 48: G02, G03 vector of I,J and K66
Figure 49: Circular interpolation of different θ 66
Figure 50: Circular interpolation example 167
Figure 51: Circular interpolation example 268
Figure 52: Helical interpolation70
Figure 53: Exact stop example72
Figure 54: G17, G18, G19 setting interpolation plane72
Figure 55: X-Y-Z space73
Figure 56: G28 return to reference position example174
Figure 57: G30 reference position return example76
Figure 58: G90/G91 (absolute/increment) commend example79
Figure 59: Program coordinate system setting example80
Figure 60: G92.1 rotating program coordinate system setting example81
Figure 61: G92.1 rotating program coordinate system setting example (cont.)82
Figure 62: G161 linear interpolation compensation example83
Figure 63: G162 vector compensation example84
Figure 64: S-curve111
Figure 65: Multi-speed control112
Figure 66: Sensor-triggered incremental displacement115
Figure 67: I/O board digital filter129
Figure 68: Speed-time before interpolation136
Figure 69: Reference radius and velocity138
Figure 70: Home Offset Action144
Figure 71: Home Offset Action (cont.)144
Figure 72: Backslash amount vs feedrate147
Figure 73: Mechanical compensation amount vs time149
Figure 74: Static dual feedback error timeout151 FATEK Automation Corporation

FBs-30GM Motion Controller User's Manual

1. Overview of FBs-30GM

FBs-30GM is the 3-Axis Motion Control Module designed for FBs PLC series. With FBs-30GM, FBs PLC series can achieve circular interpolation, helical interpolation and other advanced motion control. Besides, FBs-30GM supports incremental rotary encoders and optical incremental linear encoders to implement precise close loop control. FBs-30GM adopts widely used G-code from standard RS274D to describe motion behavior. Pairing up with CAM software, FBs-30GM can help users in much more complicated motion control and dealing with applications in many aspects.

1.1 Dimensions

The dimensions of FBs-30GM as shown in 錯誤! 找不到參照來源。 below:

Figure 1: The dimensions of FBs-30GM

1.2 Composition and part names

錯誤! 找不到參照來源。 shows FBs-30GM's composition:

Figure 2: Front view of FBs-30GM

- ① 35mm-width DIN RAIL
- 2 DIN RAIL tab
- ③ Hole for screw fixation (size: 4.5X2)
- ④ Terminals of 24VDC output and digital I/O terminals (Pitch 7.62mm)
- 5 Terminals of main power input and servo signals (Pitch 7.62mm)
- 6 Communication interface cover plate
- ⑦ RS-485 COM port
- (8) Status indicators
- (9) USB Host port
- ① Ethernet RJ45 port
- (1) Right side cover plate

1.3 Status indicators

Table 1 shows the meaning of each status indicators.

Name	Description	
PWR	Green:	
	FBs-30GM is connected to the ac power supply.	
RUN	Yellow:	
	System is ready.	
	Blinking yellow:	
	Motion program is processing.	
ERR Blinking red:		
	Motion control kernel sends alarm message and has to	
	suspend processing.	
485	Yellow:	
	RS485 communication success.	
LAN	Green,	
	LAN communication success. •	

1.4 Terminals

Terminals and its descriptions are described as below.

Figure 3: FBs-30GM terminals

Table 2: Upper terminal signals

Terminal	Description
	Connect to PE (Protective Earth)
MPGND	The ground of MPG5V
MPG5V	5V DC output
+24V OUT-	24V DC output
MPGA(+/-)	Input of MPG hand wheel A-phase pulse
MPGB(+/-)	Input of MPG hand wheel B-phase pulse
S-ON(+/-)	System is all set and these two terminals become
	short-circuited (refer to FBs PLC's relay M1467)
DOG0 ~ 2	Near point signal input
LSP0 ~ 2	Limit Stroke of positive limit
LSN0 ~ 2	Limit Stroke of negative limit
	Emergency stop, system will cease process and get into
E.STOP	not-ready state when this signal is ON. Relay S-ON will be
	open (M1467 OFF) at the same time.
COM0	Common of DOG \land LSP \land LSN \land E.STOP and X8 signals
X0 ~ X8	Digital input signals (refer to FBs PLC's relay M1480 ~
	M1488)
COM1	Common of X0 ~ X7 signals
Y0 ~ Y5	Digital output signals (refer to FBs PLC's relay M1425 ~
	M1430)
COM2	Common of Y0 ~ Y1 signals
COM3	Common of Y2 ~ Y5 signals

Terminal	Description
L, N	Main power input, 100 ~ 240 VAC, 50/60 Hz
VO(+/-)	Analog voltage output (controlled by D3435), range
	from -10V to +10V
A0(+,-) ~ A2(+,-)	A-phase feedback signals from encoder
BO(+,-) ~ B2(+,-)	B-phase feedback signals from encoder
PG0(+,-) ~ PG2(+,-)	Index signals from encoder
APO(+,-) ~ AP2(+,-)	A-phase pulse signal outputs
BPO(+,-) ~ BP2(+,-)	B-phase pulse signal outputs
ALM0(+,-) ~ ALM2(+,-)	Axial alarm signals

Table 3: Lower terminal signals

2. Specification

Power supply voltage	Main power voltage input 100 ~ 240 VAC, 50/60 Hz
Fuse capacity	2A/250 VAC
24VDC output current	24VDC output current up to 500mA
MPG5V output current	5VDC output current up to 250mA
Grounding	The diameter of grounding wire connected to PE shall
	not be less than that of L, N terminal of the power
	supply.

Table 4: Power input/output specification

Table 5: Input signals

Torminal		Max. input	
Terminal	Description	Current	Voltage
	Input of MPG hand wheel	15mA	5V
MPGA+,MPGA-	A-phase pulse (differential inputs)		
	Input of MPG hand wheel	15mA	5V
IVIPGB+,IVIPGB-	B-phase pulse (differential inputs)		
DOG	Near point signal input	10mA	24V
LSP,LSN	Limit Stroke of positive and	10mA	24V
	negative limit		
E.STOP	Emergency stop signal	10mA	24V
	Digital input signals, single-end	10	2414
XU X8	sourcing input	TOUNA	24V
60140	Common of DOG $ imes$ LSP $ imes$ LSN $ imes$	110m 4	0)/
COIVIO	E.STOP and X8 signals	TTOWA	UV
COM1	Common of X0 ~ X7 signals	80mA	0V

ltem	Description	Max.	input
Terminal	Description	Current	Voltage
A+, A-	Axial feedback signal (500 kHz high		
	speed digital signal input)	15 m 4	EV
B+, B-	Axial feedback signal (500 kHz high	T2IIIA	20
	speed digital signal input)		
PG+, PG-	Encoder index signal (500 kHz high	15mA	5V
	speed digital signal input)		
	Axial alarm feedback signal (low	10mA	24V
ALIVIT, ALIVI-	speed input)		

Table 6: Feedback signals

ltem		Max. i	nput
Terminal	Description	Current	Voltage
	Relay output (ofter system start up		250
S-ON+,S-ON-	Relay output (after system start up,	1A	VAC
	it switches to short-circuited)		30VDC
AP+,AP-	Axial position control pulse signal	20mA	5V
BP+,BP-	Axial position control pulse signal	20mA	5V
	Digital output signal (photo coupler		
	isolated output).	E00mA	
YU ~ YS	Do not connect to any ac power	500MA	-
	source.		
	Common of Y0 ~ Y5 signals.		
	Do not connect to any ac power		
COM2/COM3	source and connect a 2A fuse in	1000mA	5 ~ 30V
	series to ensure electrical circuit's		
	safety.		
VO+	Analog voltage output	10mA	+/-10V
VO-	Analog voltage output ground	10mA	0V

Table 7: Output signals

Figure 4: Input and output points wiring

Figure 5: RS-485 COM port

Table 8: RS485 pin description

Pin	Description
NC	Not connected
GND	Ground
D-	Data-
D+	Data+

PLC connects to FBs-30GM with a specific port Port2 because it guarantees a 921600 high baud rate. Figure 6 takes FBs PLC-CB55 as example to illustrate how FBs PLC connects to FBs-30GM.

Figure 6: Connection between FBs PLC and FBs-30GM (with CB55)

Warning! Please do not connect 24VDC ground and MPGND together. Otherwise it may cause internal hardware broken.

Figure 7: Improper wiring

Please use wires of 1.6mm and above for the grounding.

Figure 8: Selecting the grounding wire

Never connect the AC main circuit power supply to any of the input/output terminals, as it will damage FBs-30GM. Check all the wiring prior to power up. To prevent any electromagnetic noise, make sure FBs-30GM is properly grounded. Do not touch the terminals when power on.

3. Wiring

3.1 Wiring example with Yaskawa servo amplifier

Figure 9: Wiring example with Yaskawa servo amplifier

FATEK Automation Corporation

Figure 10: Connecting feedback signals from Yaskawa servo amplifier

FATEK Automation Corporation

3.2 Wiring example with Mitsubishi servo amplifier

FATEK Automation Corporation

Figure 12: Connecting feedback signals from Mitsubishi servo amplifier

FATEK Automation Corporation

4. GMMon – monitor software

GMMon is the computer monitoring software for FBs-30GM. User can monitor the operating status of FBs-30GM by using GMMon. Installation is described in section 4.1. Section 4.2 is about setting up a connection. Section 4.3 is the introduction of GMMon.

4.1 GMMon Installation

Please follow the steps below to install GMMon.

- 1. Install Windows Update
- 2. Execute "MacroDev10.116.6C.msi" to install MacroDev
- 3. After the installation of MacroDev, execute "Fatek GMMon Setup.exe" to install GMMon

Please follow the steps below to install Windows Update:

- i. VBSYS\setup.exe (necessary for 32-bit PC)
- ii. vbrun60sp6.exe
- iii. dotnetfx.exe
- iv. msxml3.msi
- v. VS2003LIB.msi
- vi. dotnet2fx.exe (necessary for 32-bit PC)

Please restart the computer after the installation of Windows Update. If you encounter any error during the installation, please ignore it. Your computer might have higher version of software installed on it, so there is no need for you to install it,

Installation of MacroDev

Step1. Double-click the MacroDev setup file and then click "Next".

븅 MacroDev	
Welcome to the MacroDev Setup Wizard	
The installer will guide you through the steps required to install MacroDev on yo WARNING: This computer program is protected by copyright law and internation	ur computer. nal treaties.
Unauthorized duplication or distribution of this program, or any portion of it, may or criminal penalties, and will be prosecuted to the maximum extent possible und	result in severe civil ler the law.
Cancel < Back	Next >

Figure 13: Step1 of MacroDev installation procedure

Step2. Select installation folder.

B MacroDev	
Select Installation Folder	
The installer will install MacroDev to the following folder.	
To install in this folder, click "Next". To install to a different folder, enter it below	or click "Browse".
<u>F</u> older:	
C:\Program Files (x86)\SYNTEC\MacroDev\	Browse
	Disk Cost
Install MacroDev for yourself, or for anyone who uses this computer:	
Everyone	
⊚ Just me	
Cancel < Back	Next >

Figure 14: Step2 of MacroDev installation procedure

Step3. Confirm installation and then click "Next".

岗 MacroDev	
Confirm Installation	
The installer is ready to install MacroDev on your computer. Click "Next" to start the installation.	
Cancel < Back	Next >

Figure 15: Step3 of MacroDev installation procedure

Step4. Installing MacroDev

岗 MacroDev			
Installing MacroDev			
MacroDev is being installed.			
Please wait			
	Cancel	< Back	Next >

Figure 16: Step4 of MacroDev installation procedure

Step5. Installation is completed. Click "Close" to exit.

HacroDev	
Installation Complete	E .
MacroDev has been successfully installed.	
Click "Close" to exit.	
Please use Windows Update to check for any critical updates to the .NET Fram	iework.
Cancel < Back	Close

Figure 17: Step5 of MacroDev installation procedure

Installation of GMMon

Step1. Run "Fatek GMMon Setup.exe" and then click "Next".

Figure 18: Step1 of FATEK GMMon installation procedure

B FATEK GMMon - InstallShield Wizard	×
Customer Information Please enter your information.	E
User Name: User Name	
Organization:	
InstallShield < Back Ne	ext > Cancel
< Back Ne	ext > Cancel

Step2. Enter customer information.

Figure 19: Step2 of FATEK GMMon installation procedure

B FATEK GMMon - InstallShield Wizard
Ready to Install the Program The wizard is ready to begin installation.
If you want to review or change any of your installation settings, click Back. Click Cancel to exit the wizard. Current Settings:
Setup Type: Typical
Destination Folder: C:\Program Files (x86)\fatek\30GM\
User Information: Name: User Name Company:
InstallShield Cancel

Step3. Click "Install" to start Installation.

Figure 20: Step3 of FATEK GMMon installation procedure

Step4. Installing FATEK GMMon and waiting for the process bar to be completed.

🛃 ГАТЕК С	iMMon - InstallShield Wizard
Installing The prog	gram features you selected are being installed.
12	Please wait while the InstallShield Wizard installs FATEK GMMon. This may take several minutes. Status:
InstallShield -	< Back Next > Cancel

Figure 21: Step4 of FATEK GMMon installation procedure

Step5. Installation has been completed. Click "Finish" to exit.

Figure 22: Step5 of FATEK GMMon installation procedure

- 4.2 Setting up a connection
 - 4.2.1 Configure IP address

The default IP address in FBs-30GM is 192.168.10.10. The computer connected to FBs-30GM should have an IP address such as 192.168.10.XXX. If only one network interface card exist and the IP address is not 192.168.10.XXX, you can do the following steps to add a new IP address to your computer.

(PS: The computer and FBs-30GM should be in the same subnet, or your computer can connect to the network port of Fbs-30GM directly)

 Go to Internet Protocol Version 4 (TCP/IPv4) Properties page and click "Advanced".

Internet Protocol Version 4 (TCP/IPv4)	Properties	x
General		
You can get IP settings assigned auton this capability. Otherwise, you need to for the appropriate IP settings.	matically if your network supports o ask your network administrator	
Obtain an IP address automatical	lly	
• Use the following IP address:		ъI
IP address:	10 . 7 . 5 . 51	
Subnet mask:	255.255.0.0	
Default gateway:	10 . 7 . 5 . 2	
Obtain DNS server address autom	natically	
• Use the following DNS server add	iresses:	٦l
Preferred DNS server:	10 . 7 . 5 . 2	
Alternate DNS server:		
Validate settings upon exit	Ad <u>v</u> anced	>
L	OK Cancel	

Figure 23: Internet Protocol Version 4 (TCP/IPv4) Properties

2. Click "Add" to add a new IP address as 192.168.10.XXX.

DNS WINS Uptions	\$
IP add <u>r</u> esses	
IP address	Subnet mask
Add	Edit Remove
Add	L COUL Hemove
Agd	Luc Hemove

Figure 24: Add a new IP address

4.2.2 Change FBs-30GM's IP address

The default IP of FBs-30GM is 192.168.10.10. User can change its IP address with a USB flash drive by following the procedure below.

- 1. Prepare a USB flash drive
- Create a file named "Setting0.ini" with the content below (take IP address "192.168.10.11" as example) and put this file in your USB root directory.

ACTION=SET_IP

PARAMETER=0,192.168.10.11,255.255.255.0,0,0,0

- 3. Insert the USB flash drive containing "Setting0.ini" to FBs-30GM.
- 4. Turn off FBs-30GM and on again, wait until RUN led is yellow: it means the system has finished restarting.
- Pull out the USB and check its root directory. If a file named "Setting0.out" exists, it means that the IP address has been changed successfully.
- Note: When there exists "Setting0.out" file in the USB root directory before inserting the USB, FBs-30GM's IP address would not be modified. You have to delete "Setting0.out"

4.3 Functions of GMMon

There are five main functions in GMMon, the System function, the Monitor function, the Simulate function, the Files function and the Debug function.

- A. System: fill in the IP address of FBs-30GM to connect or disconnect. You can set the parameter or change the language.
- B. Monitor: monitor the content and the graph illustrated by the motion program which is in process.
- C. Simulate: Simulate a motion program on local PC without connection to FBs-30GM.
- D. Files: manage motion program files.
- E. Debug: you can use it for debugging parameters.

Monitor and Debug functions can only be operated when connecting to FBs-30GM, while Simulate and Files functions can only be operated when disconnecting to FBs-30GM.

State	Dis Dis	sconnected			5 CMMon Versions Vol		
	dress: 10	169.0.22			Gwillion version. Voj		
0	G 19.	2.108.0.22	Connect	Language/语言/语言:	English		
Paran Para.	15~3837	Para. 8001~8600					
•	Pr15	0	I/O board digita	al filter type			
	Pr17	0	Control precision				
	Pr41	0	X axis motor co	X axis motor command polarity			
	Pr42	0	Y axis motor command polarity				
	Pr43	0	Z axis motor command polarity				
	Pr61	0	X axis encoder pulse count Y axis encoder pulse count Z axis encoder pulse count				
	Pr62	0					
	Pr63	0					
	Pr81	0	X axis encoder	X axis encoder feedback gain of the servo board Y axis encoder feedback gain of the servo board Z axis encoder feedback gain of the servo board			
	Pr82	0	Y axis encoder				
	Pr83	0	Z axis encoder				
	Pr121	0	X axis gear num	nber at the ballscrew side			
	Pr122	0	X axis gear number at the motor side				
	Dr132	0	V axis goar pur	8 Import 9 Export	10 Refresh 11 Up		

4.3.1 System function page

Figure 25: System function page

- 1. **Status:** ON LINE / OFF LINE status
- 2. IP Address: Input IP address of the FBs-30GM to connect
- 3. **Connect / Disconnect:** get connected / disconnected

- 4. Kernel Version: kernel version number of FBs-30GM
- 5. GMMon Version: GMMon software version number
- 6. Language/語言/语言: Change the language of GMMon
- 7. Parameters: list of FBs-30GM's operating parameters
- 8. Import: import the parameter configuration file
- 9. Export: Export the parameters configuration to a file
- 10. **Refresh:** refresh the page to see the current value of FBs-30GM parameters
- 11. Update: update FBs-30GM parameters
- 12. **Connection indicator:** green light blinks when FBs-30GM is connected or red light blinks when alarm happens.

4.3.2 Monitor function page

After connecting to FBs-30GM, use can use Monitor function.

Figure 26: Monitor function page

- 1. **Monitoring screen:** According to the motion program file, the locus will be drawn on this screen and user also can foresee the future locus.
- 2. Machine: current coordinate values of machine
- 3. Program: current coordinate values of program
- 4. Program Name: motion program name

- 5. Line: the motion program line number which is in process
- 6. **Program content:** display the content of the motion program, and the line in blue means it is in progress
- ViewPoint: select one of the seven coordinate systems such as XYZ space, XY plane, XZ plane, YZ plane, YX plane, ZX plane and ZY plane
- GMMon NC File 2 ĥ≣ File: **Coordinate Position** Х 0 3 0 Ζ 0 Program Name name 4 Line nooo 5 1 6 20 ViewPoint ● XYZ ◎ XY ◎ XZ ◎ YZ ⊙ YX ⊙ ZX ⊙ ZY OFF LINE

4.3.3 Simulate function page

Figure 27: Simulate function page

- 1. **Simulation Result:** For user to check if the program is correct, it draws the trace according to the selected motion program.
- 2. **NC Files:** select the program which is going to be simulated
- 3. **Coordinate Position:** display the current simulation coordinates
- 4. **Program Name:** the program name of the selected program
- 5. Line: the motion program line number which is in simulation
- 6. **Program Content:** display the content of the simulated motion program, and the blue line has just being simulated
- 7. Play: simulate all the content of the motion program
- 8. Step: simulate one line of the motion program at a time

9. ViewPoint: select one of the seven coordinate systems such as XYZ space, XY plane, XZ plane, YZ plane, YX plane, ZX plane and ZY plane

GMMon	NC Files Management				
System Monitor	30GM IP Address: 192.168.0.11 1 Local: c:\FATEK\30GM\Motion_Progr 30G G0000 G0001	SM: \\30GM\M Name MDIBlock 00001	: \\30GM\MotionFiles\ Name Size Last Modified MDIBlock 2 03-20-12 12:01 00001 18 02-20-12 14:45		Connect 2 2014/1/15 上午 10:43:06 Reading Motion Files 2014/1/15 上午 10:43:07
Simulate Files	G0002 G0003 G0161 G0162 G0163 G0164 G0165 G0166 G0166 G0167	TEST G0000 G0001 G0002 G0002 G000 G016 G016 G016	78 54 200 154 download delete Rename	02-04-06 06:18 01-15-14 09:00 01-15-14 09:00 01-15-14 09:00 1-15-14 09:00 1-15-14 09:00 1-15-14 09:00 1-15-14 09:00	Reading Complete
	3	G0164 G0165 G0166 G0167 O1000	111 73 40 34 105	01-15-14 09:00 01-15-14 09:00 01-15-14 09:00 01-15-14 09:00 01-15-14 09:00	5
	OFF LINE				0

4.3.4 Files function page

- FBs-30GM IP Address: enter IP address of the FBs-30GM to connect
- 2. Connect: get connected
- Local: the motion program will be put in the local path C:\FATEK\30GM\Motion_Programs
- 4. **30GM:** the path of motion program on FBs-30GM
- 5. Log message: this displays log message of file management
- A. Upload:

Drag and drop the file from Local to 30GM.

B. Download:

Drag and drop the file from 30GM to Local.

C. Download: Right click the mouse button to the file and select download.

D. Delete:

Right click the mouse button to the file and select delete.

E. Rename:

Right click the mouse button to the file and select rename.

GMMon										x
	Syst	em Data								
合目	•	0	8414	100	0	200	0	300	0	<u>^</u>
System		1	171127	101	0	201	0	301	0	
		2	85563	102	0	202	0	302	0	=
		3	342254	103	0	203	0	303	0	
Monitor		4	5000	104	0	204	0	304	0	
		5	10000	105	0	205	0	305	0	
		6	2701	106	0	206	0	306	0	
Simulate		7	181067776	107	0	207	0	307	0	
		8	0	108	0	208	0	308	0	
		9	0	109	0	209	0	309	0	
Files		10	0	110	0	210	0	310	0	
		11	0	111	0	211	0	311	0	
		12	0	112	0	212	0	312	0	
Debug		13	0	113	0	213	0	313	0	
		14	0	114	0	214	0	314	0	
		15	0	115	0	215	0	315	0	
1		16	6667	116	0	216	0	316	0	
		17	6667	117	0	217	0	317	0	
		18	11111	118	0	218	0	318	0	
		19	0	119	0	219	0	319	0	
		20	0	120	0	220	0	320	0	-
	ON LINE									

4.3.5 Debug function page

[8 ~ 10]: X/Y/Z axis following error value

[Definition]: The error amounts between axial position command values and feedback values, and is calculated as below.

X/Y/Z axis following error value =

Absolute position command value - Absolute position feedback value Unit: BLU

[Description]:

- 1. These variables are the current amounts of axial tracking errors, used to check the amounts of errors between axial position command values and feedback values.
- 2. When the axis is stationary, the error amount at this time is called static error and in theory is almost equal to 0. If it is greater than Pr561 ~ Pr563 for X, Y and Z-axis, FBs-30GM will send alarm MOT-008.
- 3. When axes are moving, the error amounts at this time are called dynamic errors and in theory should be less than the maximum allowable amount of following
error values 16 \sim 18. Otherwise, FBs-30GM will send alarm MOT-019 or MOT-023.

4. When feedrate override is uniform, these variables should be almost equal to debug variables 32 ~ 34. Otherwise, please check the position control loop gain of the servo driver is the same as Pr181 ~. It may also be caused by enabled feed-forward or command filter function of servo driver. Of course, abnormal wire connection may cause the inconsistencies between debug variables 8 ~ 10 and 32 ~ 34.

[24 ~ 26]: X/Y/Z axis absolute position feedback value

[Definition]: The axial position control feedback of the motors Unit: BLU

[Description]:

1. For non-absolute encoder, these variables will be set to zero after the first reference searching is completed.

[40 ~ 42]: X/Y/Z axis absolute position command value [Definition]: Cumulative command pulses sent by FBs-30GM

Unit: BLU

[Description]:

- These variables are the amounts of position commands sent by FBs-30GM and is not necessary exactly equal to debug variables 72 ~ 74 (machine coordinates) because these variables also include mechanical compensations (such as backlash, sharp, pitch and temperature).
- 2. For non-absolute encoder, this variable will be set to zero after the first reference searching is completed.

[48 ~ 50]: X/Y/Z axis motor index counter

[Definition]: The number of pulses is recorded when the motor index feedback signal of each axis is generated.

[Description]:

- Theoretically updated increments of these variables each time have to be equal to Pr61 ~ Pr63, and if not, which means that the hardware may lose pulses. Please check the feedback signal (A +, A-, B +, B-, C +, C-) wiring are off or if it is affected by noise.
- 2. For non-absolute encoder, this variable will be set to zero after the first reference searching is completed.

	Debug variables									
8	X axis following error value	40	X axis absolute position							
			command value							
9	Y axis following error value	41	Y axis absolute position							
			command value							
10	Z axis following error value	42	Z axis absolute position							
			command value							
24	X axis absolute position	48	X axis motor index counter							
	feedback value									
25	Y axis absolute position	49	Y axis motor index counter							
	feedback value									
26	Z axis absolute position	50	Z axis motor index counter							
	feedback value									

Table 9: Debug variables

Other diagnostic variables are for internal use only.

5. Operate and execute motion programs

In addition to operating FBs-30GM, FBs-PLC can monitor the input states and control the output states of 30GM. Please refer to Appendix I Special relays and interface registers of FBs-PLC.

5.1 Relation between FBs PLC and FBs-30GM

Figure 30: Relation between FBs PLC and FBs-30GM

FBs-30GM cannot run independently and must work with FBs PLC. After FBs PLC sends commands through RS-485 to 30GM, 30GM acts correspondingly.

- 5.2 Procedure to execute a motion program
 - 5.2.1 Upload the motion program to FBs-30GM

Use Notepad or other text editors to edit a motion program. Upload the motion program to FBs-30GM.

	GMMon						
ſ		NC Files Management					
	System	30GM IP Address: 192.168.0.100					Connect
		Local: C:\Program Files (x86)\FATEK	30GM:	\\30GM\M	otionFiles\		
11		[Motion_Programs]		Name	Size	Last Modified 🔺	2013/9/23上午 11:29:22
	Monitor	G0000		01821	997	09-10-13 19:41	Reading Motion files
		G0001		O1010	37	08-09-13 17:49	Reading complete.
		60002		O0999	221	09-11-13 09:36	······································
	Simulate	G0161		O0910	958	09-04-13 13:46	
IIr		G0162		O0907	384	09-04-13 13:42	
		G0163		O0906	203	09-11-13 10:14	
	Files	G0164		O0905	843	09-04-13 12:57	
		G0165		O0904	1540	09-04-13 12:42	
		G0166		O0666	205	09-10-13 19:16	
		G0167		O0555	76	08-26-13 15:52	
	Debug	00010		O0333	172	08-28-13 14:02	
				O0111	70	09-11-13 11:10	
				O0055	124	08-26-13 15:48	
				O0012	99	07-25-13 15:23	
				O0011	24	07-25-13 15:23	
				O0010	952	07-25-13 15:23 🛫	
				•		•	
							Â
		OFF LINE					0

Figure 31: GMMon Files function

System	NC Files Management 30GM IP Address: 192.168.0.100 Local: C:\Program Files (x86)\FATEK'	30GM: \\30GM\MotionFi		Connect
System	30GM IP Address: 192.168.0.100 Local: C:\Program Files (x86)\FATEK	30GM: \\30GM\MotionEi		Connect
	Local: C:\Program Files (x86)\FATEK	30GM: \\30GM\MotionFi		
Monitor Simulate	[Motion_Programs]	Name S 01821 9 01010 0 00999 2 00910 9 00907 3 00906 2 00905 8 00904 1 00666 2	Last Modified 977 09-10-13 19:41 37 08-09-13 17:45 221 09-11-13 09:36 958 09-04-13 13:46 384 09-04-13 13:46 203 09-11-13 10:16 343 09-04-13 12:55 540 09-04-13 12:42 205 09-10-13 19:16	2013/9/23 上午 11:29:22 Reading Motion files 2013/9/23 上午 11:29:23 Reading complete.
Debug		O05 0 O0333 1 O0111 0 O0012 0 O0011 0 00010 2	76 08-26-13 15:52 172 08-28-13 14:02 70 09-11-13 11:11 124 08-26-13 15:42 99 07-25-13 15:22 24 07-25-13 15:22 952 07-25-13 15:22 11 1 1	

Figure 32: Drag and drop the file to upload

Motion program naming rule:

FBs PLC assigns the motion program to 30GM by setting the register D3431. Therefore, the file name of the motion program must follow the naming format below, so FBs-30GM is able to identify the designated motion program.

Motion program naming format:

- A. Four digits come after an uppercase O.
- B. If the digits are less than four, left pad zeroes to four digits.
- C. The four-digit number ranges from 1 to 9999.(Out of this range may cause unpredictable results)

Examples:

	Number 1	: 00001
\triangleright	Number 456	: 00456
\triangleright	Number 7156	: 07156
\triangleright	Unqualified file name	: O-1234 、 O83412 、 O0000 、 Oabcd

GMMon					9 X				
~=	30GM Connection Status			System Information					
System	Statu	us: OFF LIN	E	Kernel Version: GMMon Version: V01.01					
	IP Ac	ddress: 192.168	.0.11	Connect Language/語言/语言: English	•				
	Paran	neters							
Monitor	Para.	15~3837 Para.	8001~8600						
	•	Pr15	3	I/O board digital filter type	-				
		Pr17	2	Control precision	=				
Simulate		Pr41	0 X axis motor command polarity						
		Pr42	0	Y axis motor command polarity					
		Pr43	0	Z axis motor command polarity					
Files		Pr61	1000	X axis encoder pulse count					
		Pr62	1000	Y axis encoder pulse count					
		Pr63	1000	Z axis encoder pulse count					
Debug		Pr81	4	X axis encoder feedback gain of the servo board	_				
		Pr82	4	Y axis encoder feedback gain of the servo board	_				
		Pr83	4	Z axis encoder feedback gain of the servo board					
		Pr121	1	X axis gear number at the ballscrew side					
		Pr122	1	X axis gear number at the motor side					
		Dr172	1	V axis goar number at the hallerrow side Import Export Refresh Update					
	OFF LI	NE			Ó				

5.2.2 Configure FBs-30GM's operating parameters

Figure 33: Use GMMon to set up operating parameters

Switch GMMon to System function page. Adjust parameters in the table to fulfill user's requirements.

Users can depend on their requirements to adjust the parameters. About parameter definitions and usage please see Appendix II.

▲ Limitations of FBs PLC

Since FBs-30GM needs to use RS485 (port 2) of FBs PLC as a communication port, any other PLC's communication module or application need to use RS485 (port 2) or it will be impossible to use.

▲ When using FBs-30GM, FBs PLC specific registers (D3401 ~ D3467) and relays (M1400 ~ M1499) will be occupied for control purposes, users should avoid using this block registers and relays for other purposes, in order to avoid unexpected results.

5.2.3 Use the JOG mode to test and adjust machine

Before using PLC to control FBs-30GM's JOG mode, you must first complete the connection between FBs PLC and FBs-30GM. FBs-30GM can execute Jog mode according to the following settings.

- Go to <u>http://www.fatek.com/</u> to download FBs-30GM PROGRAM BLOCK which establishes the communication with FBs-30GM (FATEK - Support - Software Download). Before using FBs-30GM PROGRAM BLOCK please update your PLC's OS to version V4.72.
- 2. Open FBs-30GM PROGRAM BLOCK and then continue to edit PLC's ladder
- Set FBs-30GM to Jog mode (mode selection please refer to Table 10).

D3426	Description
0	Default value, same as Auto mode
2	Auto mode
4	JOG mode
6	MPG mode
7	HOME mode

Table 10: Mode selection description

 The axes move by triggering the corresponding special relays (M1403 ~ M1408).

	Establish the communication with FbS-source	
N000	199. TXTDF	
	-CC- BLOCKS:FBS-30GM PROGRAM BLOCK V1.0	
	Set FBs-30GM to Jog mode	·
N017	X0 08.MOV	
	EN5: 4	
	D : D3426	
	X axis JOG +/-	
N018	X3	M1403
N019	X4	M1404
		()
	Y axis JOG +/-	
N020	X5	M1405
N021		M1406
	Z axis JOG +/-	
N022	X7	M1407
N023		M1408
		· ()

FATEK Automation Corporation

Figure 34: Example of JOG mode ladder diagram

About JOG mode please refer to section 0.

5.2.4 Procedure to execute a motion program

Before using 30GM to execute a motion program, you must first complete the connection between FBs PLC and FBs-30GM. FBs-30GM can run a motion program in Auto mode according to the following settings.

- Go to <u>http://www.fatek.com/</u> to download FBs-30GM PROGRAM BLOCK which establishes the communication with FBs-30GM (FATEK - Support - Software Download). Before using FBs-30GM PROGRAM BLOCK please update your PLC's OS to version V4.72.
- 2. Open FBs-30GM PROGRAM BLOCK and then continue to edit PLC's ladder
- 3. Set FBs-30GM to Auto mode (mode selection please refer to Table 10).
- 4. Specify the motion program number (D3431).
- 5. Set M1400 to start the program specified by D3431. If the value of D3431 is changed when the program is running, the changed setting of specified program would become effective at next start.
- 6. Motion program can be paused by setting M1401.
- 7. Set M1402 to stop and reset the motion program and FBs-30GM into standby state.

	Establish the commu	nication with FBs	-30GM					
N000		OGM PROGRAM BLOCH	< V1.0					
	Set FBS-30GM to Aut	o mode						
N017	M103			•		EN S:	-08.MOV_2	
					•	D :	D3426	
	Specify the motion	program number			· · ·		· · · · · · · · · · · · · · · · · · ·	
N018	M110					EN _ S :	-08.MOV-10	
					•	D :	D3431	
	Trigger XO -> 30GM	cycle start			· · ·		·····	
N019	xo l↑l					EN SET	M1400	
	Trigger X1 -> 30GM	feed hold			· · ·			
N020	×1 I†I	• •		•		EN SET	M1401	
	Trigger X2 -> 30GM :	stop		· · ·	· · ·		······································	
N021	×2 I↑I				[EN-SET	M1402	
	 Instant sectors 	· · · · · · · · · · · · · · · · · · ·	100 B			· · · · ·	· · · · · · · · · · · · · · · · · · ·	1 A

Figure 35: Example of Auto mode ladder diagram

About Auto mode please refer to section 6.1.

5.2.5 Example of FBs PLC ladder diagram

- N000: Establishes the communication with FBs-30GM
- N017: Set FBs-30GM to JOG mode
- N018: Under JOG mode, the X axis moves in the positive direction
- N019: Under JOG mode, the X axis moves in the negative direction
- N020: Under JOG mode, the Y axis moves in the positive direction
- N021: Under JOG mode, the Y axis moves in the negative direction
- N022: Under JOG mode, the Z axis moves in the positive direction
- N023: Under JOG mode, the Z axis moves in the negative direction
- N024: Reset X axis machine position (set current position as the origin of X axis)
- N025: Reset Y axis machine position (set current position as the origin of Y axis)
- N026: Reset Z axis machine position (set current position as the origin of Z axis)
- N027: Set FBs-30GM to Auto mode and specify the motion program No. 10 which is going to be execute
- N028: Set M1400 to start the program
- N029: Set M1401 to pause the program
- N030: Set M1402 to stop the program

FBs-30GM PROGRAMBLK can be downloaded from

http://www.fatek.com/ .

(FATEK - Support - Software Download) Before using FBs-30GM PROGRAM BLOCK please update your PLC's OS to version V4.72.

Establ	ish the con	nmunication	n with 30GM	1						
	-199.TXTDF BLOCKS:FBS	-30GM PRO	GRAM BLOCK	V1.0		·	•		·	
Set FB	s-30GM to 3	JOG mode								
M104	4						EN	S : D :	8.MOV 4 D3426	
X axis Y axis Z axis	JOG +/- JOG +/- JOG +/-						i			
X3										M14
X4	•				•			1		M14
X5					•				•	M14
X6							•		•	M14
X7		÷		÷			•		•	
X8	•	· · ·	÷	1	•		•		•	M14
Reset :	X, Y and Z	axes mach	ine positio	on .						(
M313	3									M14
M314	4									M14
M319	5	•						1.1		. M14

Figure 36: Example of FBs PLC ladder diagram

Figure 37: Example of FBs PLC ladder diagram (cont.)

- 5.3 Control and supervise the operating status
 - In addition to performing motion program, FBs-30GM's has a variety of functions by connecting to FBs-PLC to arrange FBs PLC's special relays (M1400 ~ M1430), special registers (D3426 ~ D3435) or use GMMon to modify the parameters.
 - In the process of motion program. Users can check the special relays (M1464 ~ M1474 and M1480 ~ M1488) and registers (D3440 ~ D3443) to monitor the operating status of FBs-30GM.
 - 3. D3432 ~ D3434 and D3440 ~ D3443, the special registers of FBs PLC, are used to pass MACRO program's user-defined data in one way direction.
 - FBs PLC uses D3432 ~ D3434 to deliver user-defined data to FBs-30GM.
 - FBs PLC uses D3440 ~ D3443 to receive user-defined data from FBs-30GM.
 - FBs-30GM has an analog output terminal, which can be adjusted by setting D3435 to control its output voltage value. D3435 ranges from 0 to 20000 corresponding to the output voltage -10V ~ +10 V linearly. (D34305 = 0, VO =-10V; D3435 = 20000, VO = +10 V)

The user-defined data in FBs-30GM can be accessed in MACRO programs. Information such as X and Y axis coordinates can be delivered with the user-defined data.

About MACRO structure motion language please refer to section 8.

5.4 Troubleshooting

Whenever the system or the program stops due to an alarm, the alarm can be found by the two ways below.

- 1. Special relay M1474 of FBs PLC is ON.
- 2. The monitor screen of GMMon displays the alarm code.

▲ General alarms can be cleared by triggering STOP after solving the causes of the alarms. Some alarms have to be cleared by shutting down and then restarting FBs-30GM.

About alarm messages please refer to Appendix III.

5.5 Trigger input terminals to execute motion programs

This function is a special application of FBs-30GM. When FBs-30GM is on standby or during the process of running, FBs-30GM can be assigned to a motion program directly and execute the program immediately by triggering one of the input terminals (X0 ~ X8) without the need to using FBs PLC to set STOP, START or change specified program.

How to use this function:

- 1. Set FBs PLC's M1424 ON.
- 2. Set FBs-30GM to Auto mode (mode selection please refer to Table 10).
- 3. Configure the parameters of FBs-30GM according to your requirement.
- 4. Trigger one of the input terminals (X0 ~ X8) of FBs-30GM.

After one of the input terminals (X0 ~ X8) of FBs-30GM is triggered, FBs-30GM will do the following actions in sequence.

- A. Stop executing program. (No action is taken if FBS-30GM is already on standby).
- B. Switch motion program to O1001 ~ O1009 corresponding to X0 ~ X8.
- C. Execute once the motion program O1001 ~ O1009.
- D. Switch to the previous motion program and return to standby state after the triggered program is finished.
- ▲ Note: Use this method to execute motion program, program name must be named as O1001 ~ O1009. Therefore, pay attention to having the corresponding motion programs in FBs-30GM, otherwise the alarm message will occur.

6. Operation mode of FBs-30GM

The operation mode of FBs-30GM can be categorized into Auto, JOG, MPG and HOME mode. About instructions of each mode please see the following sections.

6.1 Auto mode

This mode is generally used when executing motion programs. When you want to perform exercise program, you must set the operation mode to" Auto".

In this mode, commands such as start, pause or stop motion programs can be issued by setting special relays. In addition, the applications and operations described in this manual are all based on Auto mode, unless otherwise specified mode.

Operation:

- 1. Set FBs-30GM to Auto mode (mode selection please refer to Table 10).
- 2. Specify the motion program number (D3431).
- Set M1400 to start the program specified by D3431. If the value of D3431 was changed when the program is running, the changed setting of specified program would become effective at next start.
- 4. Motion program can be paused by setting M1401.
- 5. Set M1402 to stop and reset the motion program and FBs-30GM into standby state.

6.2 JOG mode

JOG function is suitable for user to test and adjust machine. In JOG mode user can move the machine toward different directions by triggering the special relays (M1403 ~ M1408) accordingly.

Operation:

- 1. Set FBs-30GM to JOG mode (set D3426 to 4, mode selection please refer to Table 10).
- Set FBs-30GM JOG speed percentage (D3429) and JOG feedrate (Pr521 ~ Pr523).
- 3. Trigger the special relays (M1403 ~ M1408) according to the direction you want the machine to travel toward.

FBs-30GM motion parameter	Descriptions
Pr521	X-axis JOG feedrate
Pr522	Y-axis JOG feedrate
Pr523	Z-axis JOG feedrate

Table 11: Axis JOG feedrate

Table 12: Special relays for JOG

Special relays for JOG	Axis and direction
M1403	X axis $+$
M1404	X axis—
M1405	Y axis $+$
M1406	Y axis—
M1407	Z axis $+$
M1408	Z axis—

6.3 MPG mode

Manual Pulse Generator (MPG) mode is for the purpose of manual or semi-automatic machine control with an external electric hand wheel. Generally MPG mode can adjust machine or vary the execution speed of motion program. FBs-30GM can be used in two ways with electric hand wheel depending on user requirement.

MPG JOG

Description:

User can use MPG (Manual Pulse Generator) mode to move the machine

Operation:

- 1. Select MPG mode (set D3426 to 6)
- 2. Select corresponding axis X, Y, Z (set M1409 ~ M1411)
- 3. Select incremental rate (set D3427)
- 4. Rotate MPG, machine will move with velocity according to rotation speed of MPG device.

MPG simulation

Description:

Users can use this function to check the speed of motion program file. This function will use the rotation speed of hand wheel to decide the feedrate of G00, G01, G02 and G03. If the hand wheel speeds up, the program moves fast. If the hand wheel stops, then the program also stops. If the hand wheel moves reversely, the program moves reversely too.

Operation:

- 1. Select AUTO mode (set D3426 to 0 or 2)
- 2. Set M1412 to on.
- 3. Set M1400 to start running motion program file.
- 4. Operator can rotate MPG to run motion program file

The faster MPG rotates, the faster machining speed is. If MPG stops, machine stops too. This function can be "Enable" or "Disable" immediately. P.S. This function is easy to use for testing machine.

Motion parameter Pr661 ~ 663: axis MPG feedrate upper bound.

6.4 HOME mode

Because of the tool setting, motion program coordinate is based on Machine zero point. So it is necessary to make sure where Machine zero point (HOME) is. When FBs-30GM boots up, the execution of reference searching (home search) is important. User should complete home return before starting AUTO motion program files.

The following describes three approaches of home return for users to select according to their machines. If users do not know which approach to choose or machines lack HOME DOG / motor index signals, users can adopt the instructions of "using absolute encoder" to do Home mode.

Using motor feedback

Step 1: Switch FBs-30GM to HOME mode (set D3426 to 7)
Step 2: Press JOG + / — of desired home return axis
Step 3: Motor moves to HOME DOG according to homing direction (Pr861 ~ 863), and 1st homing speed (Pr821 ~ 823)
Step 4: When FBs-30GM receives home DOG signal, it begins to stop
Step 5: After the motor stops at point A, it will move backwards with axis homing 2nd part speed (Pr841 ~ 843)

- Step 6: When the machine leaves home DOG, FBs-30GM will search the nearest motor index signal
- Step 7: After FBs-30GM receives the motor index signal, FBs-30GM will plan the stop action according to the home search method (Pr961 ~ 963) and homing offset (Pr881 ~ 883), and finally the motor will stop at point B
- Step 8: After completing the 1st time HOME return, FBs-30GM will initialize the system data below according to home search method (Pr961 ~ 963) and home offset (Pr881 ~ 883).

Table 13: Parameters of home search method and axis home offset

	No961=0 No881=0	No961=0/1 No881=L	No961=2 No881=L
The absolute position command	0	0	-L
The absolute position feedback	0	0	-L
Machine coordinate	0	0	-L

P.S.

After the 2nd time HOME return, FBs-30GM will only execute step 8.

V-X diagram (speed vs position) for each type of HOME return is shown as below:

Figure 38: V-X diagram of using motor feedback, Pr961=0 and Pr881=0

Using linear encoder – dual feedback

- Step 1: Switch FBs-30GM to home mode (set D3426 = 7)
- Step 2: Press JOG +/- of desired home search axis
- Step 3: Motor moves to HOME DOG according to homing direction (Pr861 \sim 863), and 1st homing speed (Pr821 \sim 823)
- Step 4: When FBs-30GM receives the home DOG signal, it will plan the stop action
- Step 5: After the motor stops at point A, it will move backwards with axis homing 2nd part speed (Pr841 ~ 843)
- Step 6: When the machine leaves the home DOG, FBs-30GM waits for the nearest zero point on linear encoder
- Step 7: After FBs-30GM receives the zero point on linear encoder, FBs-30GM will plan the stop action according to the home search method (Pr961 ~ 963) and homing offset (Pr881 ~ 883), and finally the motor will stop at point B
- Step 8: At the 1st HOME return, linear encoder dual feedback does not work, and due to the effect of mechanical error, machine cannot stop exactly on desired position (zero point of linear encoder or HOME offset), so after motor really stops on B point, FBs-30GM will instantly calculate this error Δ
- Step 9: FBs-30GM will initialize the system data below according to home search method (Pr961 ~ 963) and home offset (Pr881 ~ 883).
- P.S.
 - After booting, linear encoder dual feedback is always enabled when the 1st time HOME return is finish.
 - After booting, from the 2nd time return HOME, FBs-30GM will only execute step 9.
 - After executing the 1st HOME return successfully, the error Δ between real machine position and target position will be compensated in the next interpolation.

V-X diagram (speed vs position) for each type of HOME return is shown as below:

	No961=0	No961=0/1	No961=2
	No881=0	No881=L	No881=L
The absolute position	0	0	-L
command			
The absolute position feedback	0	0	-L
The dual feedback position	Δ	Δ	Δ
Mechanical coordinate	0	0	-L

Table 14: Home mode and home offset settings

Figure 41: V-X diagram of dual feedback, Pr961=0 and Pr881=0

Figure 42: V-X diagram of dual feedback, Pr961=0 or 1 and Pr881=L

Figure 43: V-X diagram of dual feedback, Pr961=2 and Pr881=L

Using absolute encoder

- Step 1: Move axis to the appointed point for machine origin during tuning process of servo driver
- Step 2: After triggering M1413 ~ M1415, FBs-30GM automatically records the initial value A from encoder
- Step 3: Next time when FBs-30GM is rebooted and communicates successfully with driver, regardless of positions of axis, FBs-30GM will compare present motor encoder position with value A to calculate the correct motor position
- Step 4: Updating machine coordinate, servo command and motor feedback. (If dual feedback control is used, linear encoder feedback will be updated at the same time).

P.S.

This is the easiest approach of reference searching, as long as you trigger M1413 \sim M1415 to complete the steps and take current location as the origin of coordinates.

Home return disorders diagnostic steps

1. Axis moves in the opposite direction and stops until it meets hardware stroke limit when executing HOME return.

Possible reasons:

- a. HOME DOG signal is always ON.
- Diagnostic method:

Check if input HOME DOG signal of FBs-30GM is always ON.

b. Servo motor index signal does not enter FBs-30GM.

Diagnostic method:

Move the axis manually, check whether the value of system debug variables 48 (X-axis), 49 (Y-axis) and 50 (Z-axis) change once or not when the motor turns one revolution, and the difference must equal to encoder resolution (parameters Pr61 ~ 63 and Pr81 ~ 83).

- c. FBs-30GM parameters are wrong
- Checking following parameters:
 - ✓ Pr201 ~ 203(encoder type) are set 0 or 1
 - ✓ Pr41 ~ 43(axis motor polarity) are the same as default setting of manufacturer
 - ✓ Pr861 ~ 863(axis homing direction) are the same as default setting of manufacturer
- 2. Related system alarms below, for detailed descriptions please refer to Appendix III.

MOT-021: Must re-homing MOT-022: Home position inaccurate MOT-029: Miss index in homing MOT-030: Zero speed timeout in homing MOT-036: Can't leave home dog

7. G-code and M-code of motion program

7.1 G-code instructions

G-Code	Description	G-Code	Description
G00	Positioning	G66	Marco call
G01	Linear interpolation	G67	Marco call cancel
G02	Circular interpolation / Helical interpolation (CW)	G70	Unit setting of inch system
G03	Circular interpolation / Helical interpolation (CCW)	G71	Unit setting of metric system
G04	Dwell	G90	Absolute command
G09	Exact stop	G91	Incremental command
G17	X-Y plane selection	G92	Program coordinate system setting
G18	Z-X plane selection	G92.1	Rotating program coordinate system setting
G19	Y-Z plane selection	G161	Compensation setting of linear interpolation
G28	Return to reference position	G162	Vector compensation setting of circular interpolation
G28.1	Incremental distance triggered by sensor	G163	Radius compensation setting of circular interpolation
G30	2nd, 3rd and 4th reference position return	G164	Interpolation compensation cancellation
G53	Machine coordinate system setting	G165	Electrical zero point setting
G65	Simple calling	G166	Return to electrical zero point

Table 15: G-code instructions listing

 Second way (increment): G91 G00 X70.0 Y20.0; //use difference value between appointed point and initial point to do straight interpolation to appointed point

Description:

G01 executes linear interpolation, it can be used with G90/G91 to decide absolute or increment mode, use feed rate provided by \mathbf{F} to go to the specified position.

FATEK Automation Corporation

N004	X20.0 Y7.0;	$//P_1 \rightarrow P_2$
N005	X35.0;	$//P_2 \rightarrow P_3$
N006	Y-35.0;	$//P_3 \rightarrow P_4$
N007	X-10.0 Y-10.0;	$//P_4 \rightarrow P_5$
N008	X-45.0;	$//P_5 \rightarrow P_0$
N009	G00 Z20.0;	//positioning back to above of P ₀
N010	M30;	//program end

G02		G02		
G03	CIRCOLAR INTERPOLATION	G03		
Command for	m:			
1. X-Y plane	circular interpolation:			
G17 $\begin{cases} G(G) \\ G(G) \end{cases}$	$ \begin{array}{c} \begin{array}{c} & \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} X_{-} \\ \end{array} \\ \begin{array}{c} Y_{-} \\ \end{array} \\ \begin{array}{c} R_{-} \\ I_{-} \\ \end{array} \end{array} \end{array} \\ \begin{array}{c} F_{-} \\ \end{array} $			
2. Z-X plane	circular interpolation:			
G18 $\begin{cases} G(G) \\ G(G) \end{cases}$	$ \begin{array}{c} D2\\ D3 \end{array} X _ Z _ \begin{cases} R_\\ I_ J_ \end{cases} F_ $			
3. Z-X plane	3. Z-X plane circular interpolation:			
G19 $\begin{cases} G(G) \\ G(G) \end{cases}$	$ \begin{array}{c} D_{2} \\ D_{3} \end{array} Y_{-} Z_{-} \left\{ \begin{array}{c} R_{-} \\ I_{-} J_{-} \end{array} \right\} F_{-} \end{array} $			
X, Y, Z: Specifi	ed point			
I, J, K: the vec	tor value that starting point of arc to the center of a circle (c	enter of a		
circle — startir	ng point)			
R: Radius of a	rc			
F: Feed rate				
G90/G91 deci	de absolute or increment			
Description:				

G02, G03 do circular interpolation according to appointed plane, coordinate system, size of arc and speed of interpolation, and the rotate direction decide by G02 (CW), G03 (CCW). Description of the command format as below:

FATEK Automation Corporation

Table 16: G02/G03 circular interpolation							
	Setting D	oata		Command		Definition	
1 Plane selection		G17		X-Y plane	X-Y plane setting		
			G18		X-Z plane	X-Z plane setting	
			G19		Y-Z plane	Y-Z plane setting	
2	Direction		G02		Clockwise	Clockwise direction (CW)	
2	Direction		G03		Counterc	Counterclockwise direction (CCW)	
2	End	G90	Two a	exes of X, Y, Z	End coord	dinate of arc	
3	position	G91	Two a	ixes of X, Y, Z	Vector va end point	lue from start point to	
	Distance from start		Two axes of I, J, K		Vector va	Vector value from start of arc to	
4	point to cent	ter of circle			center of	center of circle	
	Radius of arc	2	R		Radius of	Radius of arc	
5	5 Speed of feed (feedrate)		F		Feedrate	Feedrate along the arc	
Exai	mple: G02, G03dire G02 G02 G17	G03	x	G18	3 	Z G02 Y G19	
	Figure 47: G02, G03 direction						
2.	I, J, K definiti	on:					

G02		G02	
G03	HELICAL INTERFOLATION	G03	
Command form:			
1.			
G17 $\begin{cases} G02\\ G03 \end{cases}$	$X _ Y _ \begin{cases} R _ \\ I _ J _ \end{cases} Z _ F _$		
X, Y: end positior	n of arc;		
Z: end position o	f straight line;		
R: radius of arc;			
I, J: center positio	on of arc;		
F: speed of tool f	eed(feed rate);		
2.			
G18 $\begin{cases} G02\\ G03 \end{cases}$	$X_Z = \begin{cases} R_{-} \\ I_J \end{cases} Y_F_{-}$		
X, Z: end positior	n of arc;		
Y: end position o	f straight line;		
R: radius of arc;			
I, K: center position of arc;			
F: speed of tool feed(feed rate);			
3.			
G19 $\begin{cases} G02\\ G03 \end{cases}$	$Y _ Z _ \begin{cases} R _ \\ I _ J _ \end{cases} X _ F _$		
Y, Z: end position	n of arc;		
X: end position o	f straight line;		
R: radius of arc;			
J, K: center positi	ion of arc;		
F: speed of tool f	eed(feed rate);		
Description:			
When the 3 rd axis	s which is vertical to arc plane moves, G02/G03 is to be	helical	
interpolation. Th	e choice of helical interpolation is the same as circular in	nterpolation.	
Helical interpolat	tion uses G code (G17/G18/G19) to decide which plane	to do	
circular interpola	ation.		

G04	DWELL	G04	
Comm	and form:		
G04	$\left. \begin{array}{c} X_{-} \\ P_{-} \end{array} \right\}$		
X: spec	ific time (decimal point permitted 0.001 \sim 9999.999s)		
P: spec	ific time (decimal point not permitted)		
Descri	otion:		
By spe	By specifying a dwell, the execution of the next block is delayed by the specified		
time. I	n addition, a dwell can be specified to make an exact check.		
Examp	le:		
G04 X2	500; //delay 2.5 sec		
G04 X2	5; //delay 2.5 sec		
G04 P2	500; //delay 2.5 sec		
G04 P2	5; //delay 2 sec (decimal point not permitted)		

G09	EXACT STOP	G09		
Comma	Command form:			
G09 {	$\left\{ \begin{array}{c} 300\\ 701 \end{array} \right\} X_Y_Z$			
X, Y, Z:	position of exact stop			
Descrip	tion:			
When J	When pass through the corner, because tool moves too fast or servo system			
delays,	delays, tool cannot cut the exact shape of corner, but when you need to cut high			
precisio	on rectangular, you can use G09 or G61 to make it, it slow down the t	ool		
when a	pproach to corner, when reach to the specified position (in motion			
parame	ter range), it will run the next block. G09 exact stop only be effective	e in one		
block w	hich has G09.			
Notice				
G01 ch	eck window: parameter Pr421-423			

G00 check window: parameter Pr461-463

G17	X-Y PLANE SELECTION	G17
G18	Z-X PLANE SELECTION	G18
G19	Y-Z PLANE SELECTION	G19

Command form:

G17; // X-Y plane selection

G18; // Z-X plane selection

G19; // Y-Z plane selection

Description:

When use circular interpolation, tool radius compensation or polar coordinate command, need to use G17, G18, or G19 to set moving plane and tell FBs-30GM the working plane (default G17).

G28	RETURN TO REFERENCE POSITION	G28	
Command	l form:		
G28 X <u>Y</u>	_Z;		
X, Y, Z: mi mode)	d-point position (absolute value in G90 mode, increment value in G	91	
Descriptio	Description:		
It can retu	rn to reference position or return to origin point, in order not to let	the	
tool crush	tool crush, it will use G00 mode to move from present position, it will move to the		
specified s	specified safety mid-point first and then return to origin point or reference point.		
Only the a	Only the axes which are given values when using G28 will perform the reference		
position re	position return.		

G28.1 INCREMENTAL DISTANCE TRIGGERED BY SENSOR	G28.1
Command form:	
G28.1 X_ Q_ R_ F1 = _ F2 = _;	
X: Specified point of the first part (X can be replaced with Y or Z).	
Q: Second part distance, if there is no this argument, the second part distan	ce will be
the same with the first part (incremental distance).	
R: The distance to the sensor	
F1: The speed of the first part	
F2: The speed of the second part	
F: If F1 and F2 are not specified, the speed will be the same as the value of F	
Description:	
Move to X with the specified speed F1.	
After reaching X, move to Q with the specified speed F2.	
If FBs-30GM meets the optical sensor signal during the second part, FBs-30GM will	
immediately move R away from the sensor. Otherwise after the machine moves to	

Q, the execution of the block is completed

Notice:

Please connect the optical sensor to the terminal of index signal.

G30	2nd, 3rd and 4th REFERENCE POSTION RETURN	G30
Command	Command form:	
G30 Pn X_	_Y_Z_;	
X 丶 Y 丶 Z: ı	mid-point coordinates; (absolute value under G90, increment value	under
G91)		
Pn: Specifi	ed reference point (parameter #2801 ~ #2860)	
P1: mecha	nical origin point;	
P2: second	reference point;	
P_: defaul	P_: default is P2;	
Descriptio	n:	
For the co	nvenience that change tool and check, we use parameter to set a	
reference	reference point to suitable position, it can let tool need not return to mechanical	
zero point	zero point, increase efficiency in changing the tool, the usage of this command is the	
same as G28 only expect returned point. Floating reference position return		
command	, usually use in the position of automatically change the tool differ f	from
the origin	point. Movement is G00 mode.	
1		

 G53
 Machine coordinate system setting
 G53

 Command form:
 G53 X_YZ_Z_;

 X: move to specify machine coordinate of X position.
 Y: move to specify machine coordinate of Y position.

 Y: move to specify machine coordinate of Y position.
 Z: move to specify machine coordinate of Z position.

 Description:
 Machine origin point is the fixed origin point when factory build the machine, this coordinate system is fixed; when G53 is specified tool will move to the specified position on machine coordinate, when tool returns to machine zero point (0, 0, 0), this point is the origin point of machine coordinate system.

 <Notes>:
 1. G53 only effective in specified block;

2. G53 only effective absolute mode(G90), not effective in increment mode(G91);

3. Before use G53 to set coordinate system, must set coordinate system on the basement of reference return position by manual.

G65	SIMPLE CALL	G65
Commar	nd form:	
G65 P_	.L_;	
P: numb	er of the program to call;	
L: repetit	ion count;	
Descript	ion:	
After cal	After calling MACRO, P_ is called to execute and L_ indicates repeating times. But it	
is enable	is enabled only in the block with G65.	
Example		
G65 P10	L20 X10.0 Y10.0	
//Call su	//Call sub-program O0010 continuously 20 times, and set X=10.0 and Y=10.0 into	
sub-prog	ram.	
L		

G66	MACRO CALL	G66	
G67	MACRO CALL CANCEL	G67	
Commar	nd form:		
G66 P_	_L ;macro call		
G67 ;ma	cro call cancel		
P: numb	P: number of the program to call;		
L: repetit	L: repetition count;		
Descript	ion:		
After G6	After G66 is called, P_ is called to execute and L_ indicates repeating times. If there		
is a moving block, G66 block will be executed again after moving block ends until			
using G6	7 to cancel it.		

Example:

N001 G91 N002 G66 P10 L2 X10.0 Y10.0 // Repeat twice calling sub-program O0010 and set X=10.0 and Y=10.0 into sub-program. // Move to position X=20.0. After moving, call G66 P10 L2 X10.0 Y10.0. N004 Y20.0 // Move to position Y=20.0. After moving, call G66 P10 L2 X10.0 Y10.0. N005 G67 // Cancel macro call mode.

G70 UNIT SETTING OF INCH SYSTEM G70	
G71 UNIT SETTING OF METRIC SYSTEM G71	
Command form:	
G70;	
G71;	
Description:	
G70: inch system	
G71: metric system	
After change inch/metric system, origin offset value of workpiece coordinate, too	1
data, system parameter, and reference point, all of that is still correct. System wil	1
deal the change of unit automatically. After change inch/metric system, item belo	W
will change as follow:	
Coordinate, unit of speed	
Increment JOG unit	
MPG JOG unit	
Decimal Point Input	
When parameter is inputted by decimal point input, will to be the common	
measurement unit, mm, inch, secetc., if input by whole number, it will to be the	
Min unit that system default, mm, ms,etc.	
Precision (BLU:)	
Set motion parameter Pr17 to Control precision (BLU):	
1: 0.001inch / 0.01mm / 0.01deg;	
2: 0.0001inch / 0.001mm / 0.001deg;	
3: 0.00001inch / 0.0001mm / 0.0001deg.	

G92.1	ROTATING PROGRAM COORDINATE SYSTEM SETTING	G92.1
Command	form:	
G92.1 X_Y_Z_I_J_K_R_;		
X \ Y \ Z	Set the position that work coordinate system (G92) in programm	nable
coordinate	e system.	
IN JNK:	Direction vector of an axis of rotation.	
R: Angle o	f rotation.	
Descriptio	n:	
This comn	nand will take the X, Y, Z filled value as new offset and rotate an a	ingel R
about the	direction vector as a new coordinate system.	
Example:		
N1 G90 G	00 X20. Y20.	
// Machin	e coordinate X20. Y20.	
// Program	n coordinate X20. Y20.	
// Default	of MACRO system variable #1901 #1902 coordinate offset is XU.	YU.
NZ G92.1	X10. Y10. K1. R45.	
	e coordinate X20. Y20.	
// Program	n coordinate X14.142 YU.	
// Set MA	1902 coordinate Offset to X10. 110.	
// program		
Pr	ogram coordinate	to
sy	stem Y-axis	le
	System A-dais	
	Program coordinate	
	20	
	Rotate Program	
coordinate 45°		
20		
Figure 60: G92.1 rotating program coordinate system setting example		
N3 G01 X100.		
// Machin	// Machine coordinate X80.711 Y80.711	

 G161
 COMPENSATION SETTING OF LINEAR INTERPOLATION
 G161

 Command form:
 G161
 X_Y_Z_;

 X: Compensation of linear interpolation X position.

Y: Compensation of linear interpolation Y position.

Z: Compensation of linear interpolation Z position.

Description:

After setting this linear compensation, when FBs-30GM performs G-code command (G01), tool will move with extra compensation value.

Compensation will be effective when the corresponding axis is specified.

FATEK Automation Corporation

G163	RADIUS COMPENSATION SETTING OF CIRCULAR INTERPOLATION	G163	
Command	l form:		
G163 R;			
R: Radius	R: Radius compensation value of arc		
Descriptio	n:		
After setting this radius compensation, when FBs-30GM performs G-code command		command	
(G02/G03), the compensation value will be added to the radius of arc.			

G164	INTERPOLATION COMPENSATION CANCELLATION	G164
Command	form:	
G164;		
Cancel line	Cancel linear and circular compensation	
Descriptio	n:	
Compensa	Compensations about G01, G02 and G03 will be cleared.	

G165	ELECTRICAL ZERO POINT SETTING	G165
Command	l form:	
G165;		
Record cu	rrent X, Y, Z position as the electrical zero point.	
Descriptio	n:	
Users can	use G166 command to rapidly return to this point.	

G166	RETURN TO ELECTRICAL ZERO POINT	G166
Command	l form:	
G166;		
Rapidly re	Rapidly return to the electrical zero point	
Descriptio	on:	
Move in tl	ne way of command G53.	
Using this	command requires setting the electrical zero point with comman	d G165.

7.2 M code instructions

M code ancillary function is used to control machine function ON or OFF. The description is as below:

M Code	Function
M01	Selectivity program dwell
M02	End program
M30	Program end, return to starting point
M98	Call the sub-program
M99	From sub-program return to main program

Table 17: M function table

1. M01: Selective program dwell

M01 is controlled by "optional stop"; when M1421 is ON, M01 is effective, program dwell; when the switch is OFF, then M01 is not effective.

2. M02: End program

When there is M02 command in the end of main program. When FBs-30GM executes this command, machine will stop, if we need to execute the program again, we must perform "RESET", and then perform "program start".

3. M30: Program end, return to starting point

M30 command is for end of program. When program execute M30 command, the program will stop all actions, and the memory will return to the initial of the program.

4. M98/M99: sub-program control

A sub-program which has fixed performing method is executed usually, we prepare first and put it into memory, when we need to use, we can call by main program. We use M98 to call the sub-program and use M99 to end that.

Command form:

M98 P__ H__ L__; //Sub-program called P is specified number of program (ex. P1234 to motion program O1234) H is the number of ranking in specified program. L is the number of repeats that sub-program executes.

M99 P__; //Sub-program end

P is the line number that returns to main program after sub-program ends.

8. MACRO structure motion language

8.1 Introduction

To increase FBs-30GM application flexibility, FBs-30GM provide MACRO programmable function. After the machining program is declared as MACRO format, specific arithmetic operators can be used this way. The program will not only has simple motion control functions but logical and arithmetic operations.

8.2 File format

'%' is the head character and the first line is also called head line. If head line without keyword '@MACRO', statement at this file will process with standard ISO file. That means that file will not be able to use MACRO Syntax. Keyword '@MACRO' is all capitals characters. A semicolon ";" is required at the end of each line.

Example 1: MACRO file format

% @MACRO IF @1 = 1 THEN G00 X100.; ELSE G00 Y100.; END_IF; M99;

Example 2: ISO file format

% //head line
G00 X100.;
G00 Y100.;
G00 X0;
G00 Y0;
M99;

8.3 Block format

Table 18: Block format list

/	Ν	G	Х	Y	Z	I	J	К	F	М
---	---	---	---	---	---	---	---	---	---	---

/	Optional skip function (be effective when M1421 is ON)
Ν	If you use a sequence number, it must be the first in the block.
G	The preparatory function(s) G must follow N.
Х	The linear dimension words follow G. Specify the X axis first.
Y	The linear dimension words follow G. Specify the Y axis second.
Z	The linear dimension words follow G. Specify the Z axis third.
I	The interpolation words follow the dimension words. Specify
	the X axis first.
J	The interpolation words follow the dimension words. Specify
	the Y axis second.
К	The interpolation words follow the dimension words. Specify
	the Z axis third.
F	It must follow the last dimension (and interpolation) to which it
	applies.
М	Any miscellaneous function(s) that you specify must last in the
	block, just ahead of the end of block character.

8.4 Operators

Table 19: Operator list

Operator	Symbol	Precedence
Parenthesis	()[]	1
Function Evaluation	Identifier	2
	(argument list)	
Negative	-	3
Complement	NOT	3
Multiply	*	4
Divide	/	4
Modulus	MOD	4
Add	+	5
Subtract	-	5
Comparison	<,>,<=,>=	6
Equality	=	7

Inequality	<>	8
Boolean/Bitwise AND	&,AND	9
Boolean/Bitwise	XOR	10
Exclusive OR		
Boolean/Bitwise OR	OR	11

Note:

For operator "/", if the dividend and divisor are both integers, the result will be an integer

EX:

$$1.0 / 2 = 0.5$$

 $1 / 2.0 = 0.5$
 $1 / 2 = 0$
 $(1/2)*1.0 = 0$

8.5 Statements

8.5.1 Assignment
Syntax: <Variable>: = <expression>;
Description: Assign a value to variable.
Example:
@1 := 123;
#1 := #3;

8.5.2 GOTO

Syntax: GOTO n; Description: Jump to line numbers N Example: % @MACRO #1 := 1; #2 := 10; GO1 G90 X0. Y0. F1000; IF(#1 = 1) THEN GOTO #2;

END_IF; IF(#1 = 2) THEN GOTO 100; END_IF; N10 G01 G90 X50. Y0. F1000; M30; N100 G01 G90 X0. Y50. F1000; M30;

8.5.3 CASE

Syntax:

CASE <INT expression> OF

<INT>:

<Statement list>

<INT>, <INT>, <INT>:

<Statement list>

<INT>,...<INT>:

<Statement list>

ELSE

<Statement list>

END_CASE;

Description: Conditional execution by cases. According to the result of INT expression in the CASE, FBs-30GM executes corresponding program block.

Example: % @MACRO #1 := 1; G01 G90 X0. Y0. F1000; CASE #1 OF 1: X(1.0*#1) Y(1.0*#1); 2: X(2.0*#1) Y(2.0*#1); 3, 4, 5:

X(3.0*#1)Y(3.0*#1);

ELSE

X(4.0*#1) Y(4.0*#1);

END_CASE;

M30;

8.5.4 IF Syntax: IF <Condition> THEN <Statement list> ELSEIF <Condition> THEN <Statement list> ELSE <Statement list> END_IF;

Description: conditional execution

Example:

% @MACRO #1 := 3.0; G01 G90 X0. Y0. F1000; IF #1 = 1 THEN X(1.0*#1) Y(1.0*#1); ELSEIF #1 = 2 THEN X(2.0*#1) Y(2.0*#1); ELSEIF #1 = 3 THEN X(3.0*#1) Y(3.0*#1); ELSE X(4.0*#1) Y(4.0*#1); END_IF; M30;

8.5.5 REPEAT

Syntax:

REPEAT

<Statement list>

UNTIL <Condition> END_REPEAT;

Description: REPEAT loop control

Example:

```
% @MACRO
#10 := 30.;
#11 := 22.5.;
#12 := #10/2;
#13 := #11/2;
#14 := 2.0;
#15 := 1.5;
G01 G90 X#12 Y#13 F1000;
REPEAT
  G00 X(#12+#14) Y(#13+#15);
  G01 X(#12+#14) Y(#13-#15);
  G01 X(#12-#14) Y(#13-#15);
  G01 X(#12-#14) Y(#13+#15);
  G01 X(#12+#14) Y(#13+#15);
  #14 := #14 + 2.0;
  #15 := #15 + 1.5;
UNTIL (#14 > #12) OR (#15 > #13) END REPEAT;
M30;
```

8.5.6 WHILE

Syntax:

WHILE <Condition> DO <Statement list>

END_WHILE;

Description: WHILE loop control

Example:

```
% @MACRO
#10 := 30.;
#11 := 22.5.;
#12 := #10/2;
#13 := #11/2;
#14 := 2.0;
#15 := 1.5;
G01 G90 X#12 Y#13 F1000;
WHILE (#14 <= #12) AND (#15 <= #13) DO
  G00 X(#12+#14) Y(#13+#15);
  G01 X(#12+#14) Y(#13-#15);
  G01 X(#12-#14) Y(#13-#15);
  G01 X(#12-#14) Y(#13+#15);
  G01 X(#12+#14) Y(#13+#15);
  #14 := #14 + 2.0;
  #15 := #15 + 1.5;
END WHILE;
M30;
```

8.5.7 FOR

Syntax:

FOR <INT variable1> := <expression1> TO <expression2>
[BY <expression3>] DO <Statement list>
END_FOR;

Description: FOR loop control

variable1: loop control variable expression1: loop start number, long or double expression2: loop end number, long or double expression3: loop increase(decrease)number, long or double Statement list: execute statement

Example:

% @MACRO #10 := 30.; #11 := 22.5.; #12 := #10/2; #13 := #11/2; #14 := 2.0; #15 := 1.5; G01 G90 X#12 Y#13 F1000; FOR #6 := 0 TO 3 BY 1.0 DO G00 X(#12+#14) Y(#13+#15); G01 X(#12+#14) Y(#13-#15); G01 X(#12-#14) Y(#13-#15); G01 X(#12-#14) Y(#13+#15); G01 X(#12+#14) Y(#13+#15); #14 := #14 + 2.0;#15 := #15 + 1.5; END FOR; M30;

```
8.5.8 EXIT
Syntax: EXIT;
Description: Break loop or exit jump control
Example:
  % @MACRO
  #10 := 30.;
  #11 := 22.5.;
  #12 := #10/2;
  #13 := #11/2;
  #14 := 2.0;
  #15 := 1.5;
  #16 := 1.0;
  G01 G90 X#12 Y#13 F1000;
  FOR #6 := 0 TO 3 BY 1.0 DO
    IF((#14 = 4) & (#16 = 1)) THEN
       EXIT;
    END_IF;
    G00 X(#12+#14) Y(#13+#15);
    G01 X(#12+#14) Y(#13-#15);
    G01 X(#12-#14) Y(#13-#15);
    G01 X(#12-#14) Y(#13+#15);
    G01 X(#12+#14) Y(#13+#15);
    #14 := #14 + 2.0;
    #15 := #15 + 1.5;
  END_FOR;
  M30;
```

8.5.9 Comment

Syntax:

(* < Statement list > *) // <Statement list>

Description: Remark or explanation Example1: Single line comment % @MACRO G00 G90 X0. Y0.; // Return to the origin M30; Example2: Block comment % @MACRO (* This block is a comment. The contents do not affect following program execution. *) G00 G90 X0. Y0.; G00 G90 X10. Y0.; G00 G90 X10. Y10.; G00 G90 X0. Y10.; G00 G90 X0. Y10.; M30;

8.6 Functions listing

Table 20: Functions listing table

Function	Description
ABS	Calculates the absolute value of a number.
	Ex:
	#10 := -1.1;
	#1 := ABS(#10); // #1 = 1.1
	#2 := ABS(-1.2); // #2 = 1.2
ACOS	Calculates the arc cosine of a number.
	Ex:
	#10 := 1;
	#1 := ACOS(#10); // #1 = 0
	#2 := ACOS(-1); // #2 = 180
ASIN	Calculates the arc sine of a number.
	Ex:
	#10 := 1;
	#1 := ASIN(#10); // #1 = 90
	#2 := ASIN(-1); // #2 = -90
ATAN	Calculates the arc tangent of a number.
	Ex:
	#10 := 1;
	#1 := ATAN(#10); // #1 = 45
	#2 := ATAN(-1); // #2 = -45

CEIL	Return the smallest integer that is greater than or equal to a			
	number.			
	Ex:			
	#10 := 1.4;			
	#1 := CEIL(#10); // #1 = 2			
	#2 := CEIL(1.5); // #2 = 2			
COS	Calculates the cosine of a number.			
	Ex:			
	#10 := 180;			
	#1 := COS(#10); // #1 = 1			
	#2 := COS(-180); // #2 = -1			
FLOOR	Return the largest integer that is less than or equal to a number.			
	Ex:			
	#10 := 1.4;			
	#1 := FLOOR(#10); // #1 = 1			
	#2 := FLOOR(1.5); // #2 = 1			
GETARG	Read caller argument in subroutine.			
	Ex:			
	O0001 main program			
	G101 X30. Y40. Z1=40. Z2=50.;			
	G0101 extension G code macro			
	<pre>#1 = GETARG(X); // the value of X argument will store in #1</pre>			
	<pre>#2 = GETARG(Z1); // the value of Z1 argument will put in #2</pre>			
	#3 = GETARG(W); // without W argument, #3 will be			
	"VACANT"			
GETTRAPARG	For G66/G66.1 modal macro call handler to get the block's			
	information.			
	Ex:			
	O0001 main program			
	G66 P100 X100. Y100.			
	G01 X20.			
	O0100 subroutine			
	<pre>#1 := GETARG(X); // Get X argument 100. to #1</pre>			
	<pre>#2 := GETTRAPARG(X); // Get the block X argument 20. to</pre>			
	#2			

MAX	Determines the maximum of two inputs.
	Ex:
	#10 := 1.2;
	#20 := 4.5;
	#1 := MAX(#10, #20); // #1 = 4.5
	#2 := MAX(-1.2, -4.5); // #2 = -1.2
MIN	Determines the minimum of two inputs.
	Ex:
	#10 := 1.2;
	#20 := 4.5;
	#1 := MIN(#10, #20); // #1 = 1.2
	#2 := MIN(-1.2, -4.5); // #2 = -4.5
PARAMETER	To read specified system parameter number.
	Ex:
	#1 := PARAM(3203);
	// To access interpolation time interval
РОР	Pop value from Macro stack.
	Ex:
	PUSH(5); // push "5" into stack
	#1 := POP(); // popup a value to #1 (#1 = 5)
PUSH	Push value into Macro stack.
	Ex:
	PUSH(#1); // push #1 variable into stack
	PUSH(#3); // push #3 variable into stack
RANDOM	Generates a pseudorandom number.
	Ex:
	#1 := RANDOM();
ROUND	Return the value of the argument rounded to the nearest long
	value.
	Ex:
	#10 := 1.4;
	#1 := ROUND(#10); // #1 = 1
	#2 := ROUND(1.5); // #2 = 2
SCANTEXT	To scan text string from global variable.
	Notes: Because string is local, so only can stores in local variable,
	and cannot save to global variable. That is, following will get
	wrong result.

	Ex:
	% @MACRO
	@1:="12";
	#1:=SCANTEXT(1);
	OPEN("NC");
	PRINT("@1");
	PRINT("#1");
	CLOSE();
	M30;
	(*The results:
	@1 = 12849
	#1 = 12*)
SIGN	Return sign of a number, -1 for negative number, 1 for positive
	number, 0 for zero number.
	Ex:
	#10 := 4;
	#1 := SIGN(#10); // #1 = 1
	#2 := SIGN(-4); // #2 = -1
	#3 := SIGN(0); // #3 = 0
SIN	Calculate the sine of a number.
	Ex:
	#10 := 90;
	#1 := SIN(#10); // #1 = 1
	#2 := SIN(-90); // #2 = -1
SLEEP	Temporarily give up this cycle execution.
	Ex:
	SLEEP();
SQRT	Calculates the square root of a number.
	Ex:
	#10 := 4;
	#1 := SQRT(#10); // #1 = 2
	#2 := SQRT(9); // #2 = 3
STD	Standardize arguments, read a number, in argument one, by
	least increment method, in argument two, when necessary for
	decimal point programming.

	Ex:		
	#9 := STD(#9,#1600); // normalize by distance axis (BLU)		
STDAX	Standardize arguments, read a number, in argument one, by		
	least increment method, in argument two is axis address.		
	Ex:		
	#24 := STDAX(#24,X); // normalize by X dimension		
	#3 := STDAX(#3,A); // normalize by A dimension		
STKTOP	Peek the stack value by index from top one.		
	Ex:		
	PUSH(5); // push 5 variable into stack		
	PUSH(6); // push 6 variable into stack		
	PUSH(7); // push 7 variable into stack		
	#1 := STKTOP[0]; // #1 = 7		
	#2 := STKTOP[1]; // #2 = 6		
	#3 := STKTOP[2]; // #3 = 5		
TAN	Calculates the tangent of a number.		
	Ex:		
	#10 := 45;		
	#1 := TAN(#10); // #1 = 1		
	#2 := TAN(-45); // #2 = -1		
WAIT	Wait until all previous motion/logic commands are finished.		
	Ex:		
	% @MACRO // MACRO program		
	G00 X0.; // G00 position to X0.0		
	G01 X80.; // G01 linear interpolation to X80.0		
	WAIT();		
	<pre>// Wait until all previous motion/logic commands are finished.</pre>		
	G01 X80.+@471;		
	// G01 linear interpolation to X(80.0+@471)		
	<pre>// Assign @471=20.0 before this single block is executed</pre>		
	// After this block is executed, machine move to X100.0		
	M30; // Program end		
	Generally before executing a motion program, commands		
	within the program will be pre-decoded in advance. Locus and		
	endpoint of each single block are decided at this moment. By		

using WAIT() function to stop pre-decoding, after the start of
the motion program, user can change the value of @471 before
execution "G01 X80 + @ 471" block. The machine move to
X(80.0 + @471) in the end.

8.7 Sub-program control

8.7.1 Call methods

Table 21: Call methods listing table

Syntax	Description	Examples
M98 P_ H_ L_	Subprogram call,	M98 P10 L2;
	P_ subroutine name	
	H_ start N number	
	L_ repeat times	
G65 P_ L_	Macro call	G65 P10 X10.0 Y10.0;
	P_ subroutine name	
	L_ repeat times	
G66 P_ L_	Modal macro call, for	Example:
	every move block	G66 P10 X10.0 Y10.0;
	P_ subroutine name	X20.
	L_ repeat times	Y20.
		Description:
		X20 and Y20. move
		command block will call
		00010
G66.1 P_ L_	Modal macro call, for	Example:
	every block	G66.1 P10 X10.0
	P_ subroutine name	X20.
	L_ repeat times	G04 X2.;
		M31;
		Description:
		X20、G04 X2 and
		M31.every block will call
		00010

8.7.2 Return methods

Syntax	Description	Examples
M99	Return	M99;
M99 P_	Return and go to specified	M99 P100;
	label	Return to main program
	P_ sequence number	N100
M99 Q_	Return and go to specified	M99 Q100;
	line number Return to main progr	
	Q_ line number	line100
G67 Modal macro call cancel		G67;

Table 22: Return methods listing table

8.8 Variable specifications

MACRO variables can be divided into three types, local variables (Local variable, # 1 ~ # 400), system variables (System variable, # 1000 ~ # 31986), and public variables (Global variable, @ 1 ~ @ 165535). Different types of variables will have their different life cycles, as well as reading and writing rules. The following sections will have more detailed descriptions.

8.8.1 MACRO notices

- Try to use local variables (#1 ~ #400) instead of global variables (@1 ~ @10495). Because of MACRO execution, the user's data are passed through the arguments (A_, B_, ..., Z_, X1 = _, Y1 = _, ...), but passed by global variables does not comply with user's usage.
- Since the modal variables, #2001 ~ #2100, #3001 ~ #3080 will be reverted to VACANT state when the system is reset. Modal variables can be applied across multiple MACROs to exchange data and save shared resources.
- When you execute MACRO, if you need to change mode G code (G91/G90, G17/G18/G19 ..., etc.) states, please backup its current states in the beginning and restore them to its original states before leaving MACRO.
- 4. After leaving the MACRO, if you still want to keep this MACRO interpolation mode (#1000), it is recommended to designate the interpolation mode to the MACRO program number before leaving MACRO program. Thereafter as long as encountering the axial displacement of the command block, the system will automatically call this MACRO program without specifying again. Of course, this MACRO interpolation mode will be automatically removed after encountering G00/G01 / G02/G03, or the content of # 1000 changes.
- 5. When performing motion program, system will predecode MACRO program, therefore MACRO execution speed is ahead of G/M-code instructions. So if specifying variables or reading data need to be synchronized with issuing G/M-code instructions, please add WAIT() instruction before specifying variables or reading data to ensure correct operation.

- 6. Being a sub-program, the MACRO program need to add "M99;" at the last line to return to the main program.
- 7. Please try to add more comment in the program to develop good habits, and this can help to increase the readability of the program and deal with follow-up maintenance or troubleshooting.

8.8.2 Global variable

Table 23: Global variable table

Variables	Description	Rule		
@0	VACANT	R		
@1~@400	Normally arithmetic variables	R/W		
@656~@1999	Memorable variables(still exist when power off)	R/W		
@120000~@165535	Corresponding to PLC register Registry R20000~R65535			
Remark	All global variable lifetime will end when FBs-30GM is power off.			
	If user wants to memorize $@1 \sim @400$ values, after shut down			
	FBs-30GM, set Pr3811 for this function.			

Users please do not use other global variables that are not mentioned and have been used within the system to avoid system being abnormal.

8.8.3 Local variables

Table 24: Local variables listing

Variables.	Description	Rule		
#0	VACANT	R		
#1~#400	Local variable for macro program	R/W		
Remark	The local variables use in MACRO, the effective life time is only			
	useful in MACRO executive process. When the execution is finish			
	and escape from the program, the local variables will automatically			
	become vacant.			
	Sub-Program and main program can use the same local variable at the same time, the life time of variable ends along with the end of			
	the main program.			

It is suitable to use local variables if operations need to be done in a MACRO program. When calling a MACRO program, FBs-30GM has its default addresses that can be used to store incoming arguments.

Address	Variable	Address	Variable	Address	Variable Number
	Number		Number		
A	#1	J	#5	U	#21
В	#2	К	#6	V	#22
С	#3	М	#13	W	#23
D	#7	Р	#16	Х	#24
E	#8	Q	#17	Y	#25
F	#9	R	#18	Z	#26
н	#11	S	#18		
I	#4	Т	#20	X1	GETARG(X1)

Table 25: Default argument specification

8.8.4 System variables

Table 26: System variables

No	Description	Rule
#1000	Interpolation mode, 00/01/02/03	R/W
#1002	Contouring plane selection mode, 17/18/19	R
#1004	Absolute/Incremental command mode, 90/91	R
#1010	Inch/Metric mode, 70/71	R
#1046	Feedrate command, F Code	R
#1048	Caller's current line number	R
#1050	Program start sequence number	R
#1301 ~ #1303	Block end position in program coordinate	R
#1321 ~ #1323	3 Current position of X, Y or Z-axis in machine	
	coordinate, this value can't be read during	
	movement.	
#1341 ~ #1343	#1343 Current position of X, Y or Z-axis in program	
	coordinate	
#1600	Distance least input increment, refer to Pr17	R
#1602	2 Time/Rotation angle least input increment, refer to	
	Pr17	
8.8.5 MACRO example

- N1: Do linear interpolation with absolute command G90 and move to X20.0.
- N2: Call MACRO program O0201 and read caller argument X1 in subroutine.
 - > After entering O0201, X1 is stored in the local variable #1.
 - Use #10 to backup absolute command mode G90.
 - Do positioning G00 with incremental command G91 and move 10.0 along Y-axis.
 - Restore to absolute command mode G90.
 - Return to main program.
- N3: Due to absolute command mode G90 and the last interpolation mode before leaving O0201 is G00 (#1000 = 0), this block shows the machine will move to X-20.0 with G00.
- N4: Call MACRO program O0202 and read argument X through #24.
 - > After entering O0202, X is stored in the local variable #1.
 - Use #10 to backup absolute command mode G90.
 - Use #11 to backup interpolation mode G00.
 - Do linear interpolation G01 with incremental command G91 and move 10.0 along Y-axis.
 - Restore to absolute command mode G90.
 - Restore to interpolation mode G00.
 - Return to main program.
- N5: Do positioning G00 with absolute command G90 and move to X-10.0.
- N6: Program end

			% @MACRO	// O0201 sub-program
			#1 := GETARG(X1);	// read argument X1 as 10.0
			#1 := STD(#1, #1600);	// normalized (BLU)
			#10 := #1004;	// backup command mode G90
% Main program			G91 G00 Y#1;	// move 10.0 along Y-axis
N1 G90 G01 X20.			G#10;	// restore to G90
N2 G65 P201 X1=10.	// call O0201		M99:	// return to main program
N3 X-20.	// G90 G00		,	
N4 G65 P202 X-10.	// call O0202	<u>ч</u> Г		// OD2D2 sub-program
N5 X-10.	// G90 G00	_		
N6 M30	// program end		#1 := STD(#24, #1600);	// read argument X as -10.0
	// P -0		#10 := #1004;	// backup command modeG90
			#11 := #1000;	// backup interpolation mode G00
			G91 G01 Y#1;	// move -10.0 along Y-axis
			G#10;	// restore to G90
			#1000 := #11;	// restore to G00
			M99;	// return to main program

9. Examples of motion program

9.1 S-curve

Figure 64: S-curve

Program description:

```
G90 G17;
                                      // set to absolute command and X-Y
                                       plane
G00 X20.0
            Y20.0;
                                      // positioning to (20,20)
G03 X20.0
                                      // CCW circular interpolation to (20,80)
            Y80.0 R30.0 F500;
G02 X20.0 Y120.0 R20.0;
                                      // CW circular interpolation to (20,120)
G01 Y130.0;
                                      // linear interpolation to (20, 130)
G03 X20.0 Y70.0 R30.0;
                                      // CCW circular interpolation to (20,70)
G02 X20.0 Y30.0 R20.0;
                                      // CW circular interpolation to (20,30)
G01 Y20.0;
                                      // linear interpolation to (20, 20)
                                       // Program end
M02;
```


Figure 65: Multi-speed control

Program description:

G90;

G00	X0.0	Y0.0	Z0.0;
G01	X10.0	Y15.0	F100;
G01	X20.0	Y30.0	F150;
G01	X30.0	Y45.0	F200;
G01	X40.0	Y60.0	F250;
G01	X50.0	Y75.0	F300;
M02;			

9.3 Coupling

Set Pr3825 to select coupling type.

0: Cancel coupling

1: Machine coupling, coupling starts from power on and can't be canceled.

2: PeerSynchronization coupling;

Coupling starts from power on and M1422 on. When M1422 is off, coupling is canceled.

FBs-30GM receives commands from the master axis or the slave axis and then sends to two axes at the same time.

3: Superimposition coupling

Coupling starts from power on and M1422 on. When M1422 is off, coupling is canceled.

Superimposition coupling is the slave axis superimpose on the master axis. When FBs-30GM receives commands from the master axis, both of the axes will move. When FBs-30GM receives commands from the slave axis, the slave axis will move relatively to the position of the master axis.

4: MasterSlaveSynchronization coupling

Coupling starts from power on and M1422 on. When M1422 is off, coupling is canceled.

MasterSlaveSynchronization coupling is FBs-30GM gets commands from the master axis and then sends to two axes to execute.

5: One to many coupling

Coupling starts from power on and M1422 on. When M1422 is off, coupling is canceled.

Similar to PeerSynchronization coupling, FBs-30GM receives commands from the master axis or the slave axes and sends to these axes to execute.

When Bit on, the axis is coupling.

- Bit 1: X axis to carry 2
- Bit 2: Y axis to carry 4
- Bit 3: Z axis to carry 8

When Pr3822 is 12(12=4+8), the slave axes are Y-axis and Z-axis. Note: When use one to many coupling, master axis ratio and slave axis ratio become 1:1. Settings of Pr3823 and Pr3824 are not useful.

9.4 Trigger input terminals to execute motion program

- 1. Prepare motion programs for external trigger function
- The program files can be named from O1001 to O1009.
 (O1001 ~ O1009 correspond to the input terminal of FBs-30GM X0 ~ X8.)
- 3. Upload the motion program to FBs-30GM.
- 4. Set M1424 ON.
- Trigger input terminals X0 ~ X8 to begin the corresponding motion programs O1001 ~ O1009.

(If you are currently running a motion program, FBs-30GM will directly switch to the corresponding motion program and start. After the program is finished, FBs30GM will switch back to the previous motion program and return to standby state.)

9.5 Dynamically change endpoint Program description:

% @MACRO	// MACRO program
G00 X0.;	// G00 position to X0.0
G01 X80.;	// G01 linear interpolation to X80.0
WAIT();	// Wait until all previous motion/logic commands are finished.
G01 X80.+@471;	// G01 linear interpolation to X(80.0+@471)
	<pre>// Assign @471=20.0 before this single block is executed</pre>
	<pre>// After this block is executed, machine move to X100.0</pre>
M30;	// Program end

Generally before executing a motion program, commands within the program will be pre-decoded in advance. Locus and endpoint of each single block are decided at this moment. By using WAIT() function to stop pre-decoding, after the start of the motion program, user can change the value of @471 before execution "G01 X80 + @471" block. The machine move to X(80.0 + @471) in the end.

9.6 Sensor-triggered incremental displacement

Program description:

G00 X0.0; G28.1 X10.0 Q30.0 R20.0 F1=1000 F2=200; M02;

Move to X10.0 with the specified speed F1. After reaching X, machine move to Q with the specified speed F2. If FBs-30GM meets the optical sensor signal during the second part, FBs-30GM will immediately move 20.0 away from the sensor. Otherwise after the machine moves to Q, the execution of the block is completed

Figure 66: Sensor-triggered incremental displacement

Notice:

Please connect the optical sensor to the terminal of index signal.

Appendix I (Special relays and registers of FBs PLC)

FBs PLC series have special relays and registers to control or monitor the operation state of FBs-30GM. The detailed descriptions are listed in the tables below.

The special relays of FBs PLC can be divided into two types.

- A. Control relays M1400 ~ M1430: These relays are for FBs PLC to control FBs-30GM.
- B. State relays M1464 ~ M1474 and M1480 ~ M1488: These relays are for FBs PLC to monitor the operation state of FBs-30GM. Hence users can confirm the operation state of FBs-30GM by checking these state relays.

Special registers D3426 ~ D3431 store part of the operating parameters of FBs-30GMand their values can be modified through FBs PLC. Users can write data to specific user-defined global variables of MACRO by registers D3432 ~ D3434. Register D3435 can determine the output voltage of VO terminal. Registers D3440 ~ D3443 can read out data from specific user-defined global variables of MACRO.

Notice:

Relays M1400 ~ M1499 and registers D3401 ~ D3467 of FBs PLC are designed for the system of FBs-30GM. Users please do not use these registers for other purposes to avoid unpredictable behavior.

Relay	Function	Description
N41400 Showt		In AUTO mode, turn ON this relay can be used to start
1011400	Start	the motion program.
N41401	Food Hold	In the process, turn ON this relay can be used to
1011401	reeu noiu	suspend the motion program.
M1402	Reset	Turn ON this relay to reset and stop the motion
		program.
M1403	X Axis JOG+	
M1404	X Axis JOG-	In JOG mode, turn ON the relay and the machine will
M1405	Y Axis JOG+	move along the corresponding direction of axis.
M1406	Y Axis JOG-	In HOME mode, turn ON the relay to trigger reference
M1407	Z Axis JOG+	point searching of the corresponding axis.
M1408	Z Axis JOG-	

Table 27: Control relays of FBs PLC for FBs-30GM

N41400	X Axis MPG			
1011409	Selection	In MDC made, if the corresponding axial relay is ON, the		
N41410	Y Axis MPG	in MPG mode, if the corresponding axial relay is ON, the		
1011410	Selection	hand wheel input		
NA1 A 1 1	Z Axis MPG	nand wheel input.		
111411	Selection			
		In Auto mode, when this relay is ON, after starting the		
		motion program, G00, G01, G02 and G03's FEEDRATE		
N11117	MPG	OVERRIDE MPG determined by the rotational speed.		
1011412	Simulation	The faster the rotation, the faster the machine		
		movement. MPG stops, the machine stops. It is suitable		
		for processing test of machine.		
	RESET X Axis			
M1413	Machine			
	Position	Set current position to zero as the corresponding axial		
	RESET Y Axis	machine coordinate origin. Suited for test processing		
M1414	Machine	and adjust the machine coordinate. If used during		
	Position	processing, it may cause the machine coordinates		
	RESET Z Axis	incorrect.		
M1415	Machine			
	Position			
		When this relay is ON, FBs-30GM stops after a BLOCK of		
M1416	Single Block	G-CODE is finished. Users have to set Start to start		
		doing next BLOCK 。		
		When this relay is ON, if there is a skip sign " \ " in		
M1417	Optional Skip	process program, it will skip this line and do next		
		BLOCK.		
	X axis	When this relay is ON, the program will run, but the		
M1418	Machine Lock	X-axis does not move. It is usually used for program		
		checking.		
	Y axis	When this relay is ON, the program will run, but the		
M1419	Machine Lock	Y-axis does not move. It is usually used for program		
		checking.		
	Z axis	When this relay is ON, the program will run, but the		
M1420	Machine Lock	Z-axis does not move. It is usually used for program		
		checking.		
M1421	Optional Stop	When this relay is ON, the program will pause if it		

		encounters "M01" during processing. When this relay is OFF, it will skip this line.
M1422	Axis Coupling Request	This relay enables or disables coupling. When Pr3825 is 2, 3, 4 or 5, and if M1422 is ON, coupling is enabled. If M1422 is OFF, coupling is disabled.
M1423	Stroke Limit Two Switch	The second software travel limit switch. 0: Without second software travel limit 1: With second software travel limit Please refer to parameters 2441 - 2446 for further instructions.
M1424	FBs-30GM launch	FBs-30GM triggers the execution of motion programs. 0: Disable 1: Enable to trigger the execution of motion programs directly from FBs-30GM.
M1425	Drive FBs-30GM DO (Y0)	Control Y0 of FBs-30GM. 0: output transistor OFF. 1: output transistor ON.
M1426	Drive FBs-30GM DO (Y1)	Control Y1 of FBs-30GM. 0: output transistor OFF. 1: output transistor ON.
M1427	Drive FBs-30GM DO (Y2)	Control Y2 of FBs-30GM. 0: output transistor OFF. 1: output transistor ON.
M1428	Drive FBs-30GM DO (Y3)	Control Y3 of FBs-30GM. 0: output transistor OFF. 1: output transistor ON.
M1429	Drive FBs-30GM DO (Y4)	Control Y4 of FBs-30GM. 0: output transistor OFF. 1: output transistor ON.
M1430	Drive FBs-30GM DO (Y5)	Control Y5 of FBs-30GM. 0: output transistor OFF. 1: output transistor ON.

Table 28: State relays of FBs PLC for FBs-30GM

Relay	Function	Description
M1464	Start Light	This relay is ON when the motion program is processing.

	Feed Hold	This relay is ON when the motion program is neurod
111405	Light	This relay is ON when the motion program is paused.
M1466	Block Stop	This relay is ON when the motion program is in block stop.
M1467	Ready	This relay will be ON after FBs-30GM boots up completely.
M1468	X Axis Busy	When the corresponding axial relay is ON indicates that the axis manual functions (hand wheel / JOG / Home) are running,
M1469	Y Axis Busy	FBs-30GM cannot accept new manual commands. When the
M1470	Z Axis Busy	corresponding relay is OFF indicates that the axial axis in the Idle state, allowing accepted new manual commands.
M1471	X Axis Home	
	UK	After returning HOME, the corresponding axial relay will be ON,
M1472	Y Axis Home	stroke limit of each axis will be activated from then. Users
		should notice that if these relays are not ON, you should not
M1473	Z Axis Home OK	start motion program.
M1474	Alarm	When ALARM occurs, FBs-30GM will stop and this relay will be ON.
N44 400	FBs-30GM DI	The state of input terminal X0.
Status (XC		0: Input transistor OFF; 1: ON.
N41401	FBs-30GM DI	The state of input terminal X1.
IVI1481	Status (X1)	0: Input transistor OFF; 1: ON.
M1482	FBs-30GM DI	The state of input terminal X2.
	Status (X2)	0: Input transistor OFF; 1: ON.
N41400	FBs-30GM DI	The state of input terminal X3.
IVI1483	Status (X3)	0: Input transistor OFF; 1: ON.
NA1 A Q A	FBs-30GM DI	The state of input terminal X4.
111404	Status (X4)	0: Input transistor OFF; 1: ON.
N/1/0E	FBs-30GM DI	The state of input terminal X5.
M1485	Status (X5)	0: Input transistor OFF; 1: ON.
M1486	FBs-30GM DI	The state of input terminal X6.
	Status (X6)	0: Input transistor OFF; 1: ON.
N/1/97	FBs-30GM DI	The state of input terminal X7.
1011407	Status (X7)	0: Input transistor OFF; 1: ON.
M1/QQ	FBs-30GM DI	The state of input terminal X8.
ΙνΙ14δδ	Status (X8)	0: Input transistor OFF; 1: ON.

Table 29: Special registers of FBs PLC for FBs-30GM

Register No.	Function	Description	Remark
D3426	Mode selection	This register can be used to	
		select the operation mode of	
		FBs-30GM.	
		0: default(Auto)	
		2: Auto	
		4: JOG	
		6: MPG	
		7: HOME	
D3427	MPG Override	MPG step percentage speed %	
		0: x100(default)	
		1: x1	
		2: x10	
		3: x100	
		4: Set to the value of Pr2001	
D3428	Feedrate Override	G01, G02 and G03 feedrate	
		override percentage %	
		0: default(=10)	
		1: 10%	
		2: 20%	
		20: 200%	
		When Pr3207 = 2, the	
		percentage is set as the above	
		specifications. Example: D3428 =	
		5 means 50%.	
		When Pr3207 = 1, the	
		percentage is equal to the value	
		of this Register. Example: D3428	
		= 5 means 5%.	
D3429	JOG Override	JOG override percentage %	
		0: default(=10)	
		1: 10%	
		2: 20%	

		20: 200% When Pr3207 = 2, the percentage is set as the above specifications. Example: D3428 = 5 means 50%. When Pr3207 = 1, the percentage is equal to the value of this Register. Example: D3428 = 5 means 5%.	
D3430	Rapid Traverse Override	G00 rapid traverse override percentage 0: 100% 1: 0% (equal to Pr501 ~ Pr503) 2: 25% 3: 50% 4: 100% When Pr3207 = 2, the percentage is set as the above specifications. Example: D3430 = 1 means that is equal to the setting of Pr501 ~ Pr503. When Pr3207 = 1, the percentage is equal to the value of this Register. Example: D3428 = 10 means 10%. (If the percentage is less than 10, the rapid traverse override percentage is 10%).	

D3431	Motion program Number	Motion program number specified. This Register is used to specify the number of motion programs to be executed. Range: 1 to 9999 Activate method: reset	
D3432	User define input	Corresponds to FBs-30GM MACRO global variable @471.	Write only
D3433	User define input	Corresponds to FBs-30GM MACRO global variable @472.	Write only
D3434	User define input	Corresponds to FBs-30GM MACRO global variable @473.	Write only
D3435	Control VO value. Range: 0 ~ 20000 VO range: -10V ~ +10 V	VO output voltage adjustment. Range from 0 ~ 20000 correspond to -10V ~ +10 V.	Write only
D3440	User define output	Corresponds to FBs-30GM MACRO global variable @476.	Read only
D3441	User define output	Corresponds to FBs-30GM MACRO global variable @477.	Read only
D3442	User define output	Corresponds to FBs-30GM MACRO global variable @478.	Read only
D3443	User define output	Corresponds to FBs-30GM MACRO global variable @479.	Read only

Appendix II (FBs-30GM Motion parameters)

I. Motion parameters listing

Table 30: Motion parameters listing table

Index	No	Description	
1	Pr15	I/O board digital filter type	
2	Pr17	Control precision	
3	Pr41	X axis motor command polarity	
4	Pr42	Y axis motor command polarity	
5	Pr43	Z axis motor command polarity	
6	Pr61	X axis encoder resolution	
7	Pr62	Y axis encoder resolution	
8	Pr63	Z axis encoder resolution	
9	Pr81	X axis encoder feedback scaling factor	
10	Pr82	Y axis encoder feedback scaling factor	
11	Pr83	Z axis encoder feedback scaling factor	
12	Pr121	X axis gear number at the ballscrew side	
13	Pr122	X axis gear number at the motor side	
14	Pr123	Y axis gear number at the ballscrew side	
15	Pr124	Y axis gear number at the motor side	
16	Pr125	Z axis gear number at the ballscrew side	
17	Pr126	Z axis gear number at the motor side	
18	Pr161	X axis pitch of the ballscrew	
19	Pr162	Y axis pitch of the ballscrew	
20	Pr163	Z axis pitch of the ballscrew	
21	Pr181	X axis loop gain of the position loop (1/sec)	
22	Pr182	Y axis loop gain of the position loop (1/sec)	
23	Pr183	Z axis loop gain of the position loop (1/sec)	
24	Pr201	X axis sensor type	
25	Pr202	Y axis sensor type	
26	Pr203	Z axis sensor type	
27	Pr221	X servo axis type	
28	Pr222	Y servo axis type	
29	Pr223	Z servo axis type	
30	Pr241	X axis dual feedback related to port no.	
31	Pr242	Y axis dual feedback related to port no.	

32	Pr243	Z axis dual feedback related to port no.
33	Pr261	X axis dual feedback resolution
34	Pr262	Y axis dual feedback resolution
35	Pr263	Z axis dual feedback resolution
36	Pr301	X axis dual feedback scaling factor
37	Pr302	Y axis dual feedback scaling factor
38	Pr303	Z axis dual feedback scaling factor
39	Pr401	Cutting acceleration time
40	Pr402	Acceleration accelerated to 1G time
41	Pr404	Post cutting bell-shaped acceleration time
42	Pr405	Maximum cutting feedrate
43	Pr406	Maximum corner reference feedrate
44	Pr408	Arc cutting reference feedrate at radius 5 mm
45	Pr410	MPG acceleration time
46	Pr411	Rapid Travel G00
47	Pr413	Reserve local coordinate G92(G92.1) after reset
48	Pr414	Reserve Workpiece Coordinate System after reset
49	Pr421	X axis cutting in-position window
50	Pr422	Y axis cutting in-position window
51	Pr423	Z axis cutting in-position window
52	Pr441	X axis rapid travel (G00) acceleration time
53	Pr442	Y axis rapid travel (G00) acceleration time
54	Pr443	Z axis rapid travel (G00) acceleration time
55	Pr461	X axis max. rapid travel (G00) feedrate
56	Pr462	Y axis max. rapid travel (G00) feedrate
57	Pr463	Z axis max. rapid travel (G00) feedrate
58	Pr481	X axis rapid travel in-position window (G09)
59	Pr482	Y axis rapid travel in-position window (G09)
60	Pr483	Z axis rapid travel in-position window (G09)
61	Pr501	X axis rapid travel (G00) F0 feedrate
62	Pr502	Y axis rapid travel (G00) F0 feedrate
63	Pr503	Z axis rapid travel (G00) F0 feedrate
64	Pr521	X axis JOG feedrate
65	Pr522	Y axis JOG feedrate
66	Pr523	Z axis JOG feedrate
67	Pr541	X axis cutting acceleration time

68	Pr542	Y axis cutting acceleration time
69	Pr543	Z axis cutting acceleration time
70	Pr561	X axis loss pulse check window
71	Pr562	Y axis loss pulse check window
72	Pr563	Z axis loss pulse check window
73	Pr581	X axis velocity feed forward percentage
74	Pr582	Y axis velocity feed forward percentage
75	Pr583	Z axis velocity feed forward percentage
76	Pr601	X axis corner reference feedrate (mm/min)
77	Pr602	Y axis corner reference feedrate (mm/min)
78	Pr603	Z axis corner reference feedrate (mm/min)
79	Pr621	X axis maximum cutting feedrate (G01)
80	Pr622	Y axis maximum cutting feedrate (G01)
81	Pr623	Z axis maximum cutting feedrate (G01)
82	Pr641	X axis cutting bell-shaped acceleration time
83	Pr642	Y axis cutting bell-shaped acceleration time
84	Pr643	Z axis cutting bell-shaped acceleration time
85	Pr661	X axis MPG feedrate
86	Pr662	Y axis MPG feedrate
87	Pr663	Z axis MPG feedrate
88	Pr821	X axis speed of first part homing
89	Pr822	Y axis speed of first part homing
90	Pr823	Z axis speed of first part homing
91	Pr841	X axis speed of second part homing
92	Pr842	Y axis speed of second part homing
93	Pr843	Z axis speed of second part homing
94	Pr861	X axis negative homing direction
95	Pr862	Y axis negative homing direction
96	Pr863	Z axis negative homing direction
97	Pr881	X axis home offset
98	Pr882	Y axis home offset
99	Pr883	Z axis home offset
100	Pr901	X axis zero speed check window
101	Pr902	Y axis zero speed check window
102	Pr903	Z axis zero speed check window
103	Pr921	X axis home dog polarity

104	Pr922	Y axis home dog polarity
105	Pr923	Z axis home dog polarity
106	Pr941	Enable X axis home grid function
107	Pr942	Enable Y axis home grid function
108	Pr943	Enable Z axis home grid function
109	Pr961	Home mode of X axis
110	Pr962	Home mode of Y axis
111	Pr963	Home mode of Z axis
112	Pr981	X axis homing 2nd protect revolution (encoder type)
113	Pr982	Y axis homing 2nd protect revolution (encoder type)
114	Pr983	Z axis homing 2nd protect revolution (encoder type)
115	Pr1001	X axis fast home return function
116	Pr1002	Y axis fast home return function
117	Pr1003	Z axis fast home return function
118	Pr1221	X axis backlash compensation start
119	Pr1222	Y axis backlash compensation start
120	Pr1223	Z axis backlash compensation start
121	Pr1241	X axis G00 backlash compensation value (BLU)
122	Pr1242	Y axis G00 backlash compensation value (BLU)
123	Pr1243	Z axis G00 backlash compensation value (BLU)
124	Pr1261	X axis G01 backlash compensation value (BLU)
125	Pr1262	Y axis G01 backlash compensation value (BLU)
126	Pr1263	Z axis G01 backlash compensation value (BLU)
127	Pr1281	X axis backlash critical speed (mm/min)
128	Pr1282	Y axis backlash critical speed (mm/min)
129	Pr1283	Z axis backlash critical speed (mm/min)
130	Pr1301	X axis pitch error compensation type
131	Pr1302	Y axis pitch error compensation type
132	Pr1303	Z axis pitch error compensation type
133	Pr1321	X axis pitch error compensation Interval (BLU)
134	Pr1322	Y axis pitch error compensation Interval (BLU)
135	Pr1323	Z axis pitch error compensation Interval (BLU)
136	Pr1341	X axis table index for reference (home)
137	Pr1342	Y axis table index for reference (home)
138	Pr1343	Z axis table index for reference (home)
139	Pr1401	X axis mechanical compensation time constant (ms)

140	Pr1402	Y axis mechanical compensation time constant (ms)
141	Pr1403	Z axis mechanical compensation time constant (ms)
142	Pr1421	X axis max. static dual feedback error (BLU)
143	Pr1422	Y axis max. static dual feedback error (BLU)
144	Pr1423	Z axis max. static dual feedback error (BLU)
145	Pr2001	MPG 4th scaling factor
146	Pr2041	MPG resolution (Pulse/rev)
147	Pr2051	MPG scaling factor
148	Pr2401	X axis 1st Software travel limit (positive direction)
149	Pr2402	X axis 1st Software travel limit (negative direction)
150	Pr2403	Y axis 1st Software travel limit (positive direction)
151	Pr2404	Y axis 1st Software travel limit (negative direction)
152	Pr2405	Z axis 1st Software travel limit (positive direction)
153	Pr2406	Z axis 1st Software travel limit (negative direction)
154	Pr2441	X axis 2nd Software travel limit (positive direction)
155	Pr2442	X axis 2nd Software travel limit (negative direction)
156	Pr2443	Y axis 2nd Software travel limit (positive direction)
157	Pr2444	Y axis 2nd Software travel limit (negative direction)
158	Pr2445	Z axis 2nd Software travel limit (positive direction)
159	Pr2446	Z axis 2nd Software travel limit (negative direction)
160	Pr2481	2nd software limit persistency
161	Pr2801	X axis 2nd reference point
162	Pr2802	Y axis 2nd reference point
163	Pr2803	Z axis 2nd reference point
164	Pr2821	X axis 3rd reference point
165	Pr2822	Y axis 3rd reference point
166	Pr2823	Z axis 3rd reference point
167	Pr2841	X axis 4th reference point
168	Pr2842	Y axis 4th reference point
169	Pr2843	Z axis 4th reference point
170	Pr3202	I/O scan time
171	Pr3203	Interpolation time interval
172	Pr3207	Feedrate override selection
173	Pr3221	Debug level
174	Pr3241	Decimal point type
175	Pr3805	Static dual feedback error timeout

176	Pr3807	Destination not on arc check window (BLU)
177	Pr3811	Start address of persist working global variable
178	Pr3817	Fatal dual feedback error
179	Pr3818	Dual feedback self-detect error (pulse)
180	Pr3821	Coupling master axis number
181	Pr3822	Coupling slave axis number
182	Pr3823	Coupling master axis ratio factor
183	Pr3824	Coupling slave axis ratio factor
184	Pr3825	Coupling type
185	Pr3826	Coupling couple time (ms)
186	Pr3827	Coupling decouple time (ms)
187	Pr3837	Initial Command Mode
100	Pr8001 ~	X axis positive direction pitch error compensate,
188	8100	compensation table 1 ~ 100
190	Pr8101 ~	X axis negative direction pitch error compensate,
109	8200	compensation table 1 ~ 100
100	Pr8201 ~	Y axis positive direction pitch error compensate,
190	8300	compensation table 1 ~ 100
101	Pr8301 ~	Y axis negative direction pitch error compensate,
191	8400	compensation table 1 ~ 100
102	Pr8401 ~	Z axis positive direction pitch error compensate,
152	8500	compensation table 1 ~ 100
193	Pr8501 ~	Z axis negative direction pitch error compensate,
195	8600	compensation table 1 ~ 100

II. Descriptions of motion parameters

No	Descriptions	Range	Unit	Initial	Activate method
15	I/O board digital filter type	[0~3]	-	3	reset

■ I/O board digital filter type, the larger value is better to filter the noise, but also reduce the sensitivity of the I/O Signal.

0:

The system input state is on \rightarrow If the off signal get in, checking the next two signals. If either signal is off, the system input state is changed to off.

The system input state is off \rightarrow If the off signal gets in, checking the two signals behind it. If either signal is on, the system input state is changed to on.

1:

The system input state is on \rightarrow If the off signal gets in, checking the next signal. If signal is off, the system input state is changed to off.

The system input state is off \rightarrow If the on signal gets in, checking the next signal. If signal is on, the system input state is changed to on.

2:

The system input state is on \rightarrow If the off signal gets in, checking the next two signals. If both of signals are off, the system input state is changed to off.

The system input state is off \rightarrow If the on signal gets in, checking the next two signals. If both of signals are on, the system input state is changed to on.

■ 3:

The system input state is on \rightarrow If the off signal gets in, checking the next four signals. If all of signals are off, the system input state is changed to off.

The system input state is off \rightarrow If the on signal gets in, checking the next four signals. If all of signals are on, the system input state is changed to on.

Figure 67: I/O board digital filter

No	Descriptions	Range	Unit	Initial	Activate method
17	Control precision	[1~3]	-	2	restart

- Set the parameter to Control precision (BLU):
 - 1: 0.001 inch / 0.01 mm / 0.01 deg;
 - 2: 0.0001 inch / 0.001 mm / 0.001 deg;
 - 3: 0.00001 inch / 0.0001 mm / 0.0001 deg.
- It would not be affected by imperial system.

■ When the parameter is changed, all of the parameters that relate BLU have to change.

No	Descriptions	Range	Unit	initial	Activate method
<i>1</i> 1 ~ <i>1</i> 2	Axis motor command	[0 ~ 1]		0	reset
41 43	polarity	[0 1]	-	0	

The definition of motor rotation direction to the machine movement:
 0: Same;

1: Reverse the direction.

■ If the direction of machine movement is reverse the direction of command, set the parameter to revise the command.

No	Descriptions	Range	Unit	initial	Activate method
61~63	Axis encoder resolution	[10 ~ 2500000]	-	1250	reset

■ If encoder is used, setting unit is pulse/rev; if ruler is used, setting unit is pulse/mm. Note that this setting value is resolution for single phase (A or B phase) before frequency multiplication.

■ Assume that the ruler resolution is 1um/pulse (i.e., 1mm/1000pulse), with encoder scaling factor of 4 (Pr8x=4). Thus, this parameter shall set to (1000/4) =250.

Assume that the ruler resolution is 10 um/pulse (i.e., 1 mm/100pulse), with encoder scaling factor of 4 (Pr8x=4). Thus, this parameters shall set to (100/4) = 25.

No	Descriptions	Range	Unit	initial	Activate method
81~83	Axis encoder scaling factor	[1~4]	-	4	reset

Encoder feedback gain of the servo board can set to 1, 2, or 4.

No	Descriptions	Range	Unit	initial	Activate method
121 ~ 126	Gear number at the ballscrew side. Gear number at the motor	[1 ~ 9999999999]	-	1	reset

		side.					
--	--	-------	--	--	--	--	--

- Gear number at the ballscrew side, Gear number at the motor side:
- System can decide the speed rate by the parameters.

■ Ex: Gear number at the ballscrew side: Gear number at the motor side = 2:1è Motor speed: ballscrew = 2:1

No	Descriptions	Range	Unit	initial	Activate method
161 ~ 163	Pitch of the ballscrew	[1 ~ 1000000]	BLU	5000	reset

Pitch of the ballscrew:

■ Ballscrew rotate a revolution that move value of linear. (When change the Pr17, this parameter have to change.)

No	Descriptions	Range	Unit	initial	Activate method
101 ~ 102	Loop Gain of the position	[1~	1/505	20	rocot
101 105	Іоор	1000000]	1/Sec	50	reset

- Loop Gain of the position loop for servo system:
 - For each corresponding axis direction, the parameter setting value should be the same as loop gain of the position loop for driver. (Suggest every feed axis should be the same)
 - 2. System can compute reasonable servo following error by the parameter setting value. When output signal is pulse (driver is position control), the parameter setting value is only for system monitoring motor motion is OK or not.

When output signal is voltage (driver is velocity control), the parameter setting value is loop gain of the position loop for servo system.

When the parameter setting value bigger than 1000, system will input original parameter value divided by 1000. Otherwise, system will input original parameter value. (EX: 78500 divided by 100 becomes 78.5). Please refer to debug variables No.352 ~ No.354. When stable state, No.352 ~ No.354 are real loop gain of the position loop.

When System sends pulse commands (Pr381 $\sim \neq$ 1), the parameter means:

According to the formula, $F_e = \frac{V_{cmd}}{K_p(Pr181 \sim)}$, calculate ideal following error (System

debug variable No.32 \sim No.34) and real following error (System debug variable No.8

~ No.10). If the difference is too big, FBs-30GM will alarm "Fatal following error exceed".

If the feed forward turn on, FBs-30GM will calculate by the parameter then send compensation to decrease the following error.

■ System sends voltage command(Pr381 ~ Pr383 = 1). If tool rigidity is better, the value of the parameter could set bigger and make higher precision. If the value is too big, the tool will shake.

No	Descriptions	Range	Unit	initial	Activate method
201 ~ 203	1 ~ 203 Axis sensor type		-	0	restart

This parameter is used to define the encoder feedback type

- 0: Incremental encoder
- 1: Optical linear encoder
- 2: No feedback

No	Descriptions	Range	Unit	initial	Activate method
221 ~ 223	221 ~ 223 Type of servo axis		-	0	reset

■ Set the parameter is 0 : (linear axis)

- 1. Machine coordinate and absolute coordinate are linear axes.
- 2. Metric coordinate and inch coordinate transform.
- 3. G28 and G30 (reference coordinate instruct) will go back the machine origin.
- 4. It is useful in backlash compensation and quad-peak error compensation and home grid function.

Set the parameter is 1: (Rotary axis A)

Machine coordinate and absolute coordinate are rotary axes.

Coordinate value is between 0 ~ 360 degree.

The sign +/- is the direction of absolute coordinate (G90) moving instruct.

The unit in Metric coordinate system and inch coordinate system both are degree.

G28 and G30 (reference coordinate instruct) will go back to the machine origin that rotates in a revolution.

It's useful in backlash compensation and quad-peak error compensation and home grid function

Absolute coordinate (G90) moving instruction is automatic to choose the shortest path.

Set the parameter is 2: (Rotary axis B)

Machine coordinate and absolute coordinate are rotary axes.

Coordinate value is between 0 ~ 360 degree.

The sign +/- is the direction of absolute coordinate (G90) moving instruct. + rotate positive direction and – rotate negative direction.

The unit in Metric coordinate system and inch coordinate system both are degree. G28 and G30 (reference coordinate instruct) will go back the machine origin that rotates in a revolution.

It's useful in backlash compensation and quad-peak error compensation and home grid function

■ Set the parameter is 3: (Rotary axis C)

Machine coordinate and absolute coordinate are rotary axes.

Coordinate value is between -360 ~ 360 degree.

The unit in Metric coordinate system and inch coordinate system both are degree. G28 and G30 (reference coordinate instruct) will go back the machine origin that rotates in a revolution.

It's useful in backlash compensation and quad-peak error compensation and home grid function

■ Set the parameter is 4: (Rotary axis D)

Machine coordinate is rotary axis and absolute coordinate is linear axis. Coordinate value is between 0 ~ 360 degree.

The unit in Metric coordinate system and inch coordinate system both are degree. G28 and G30 (reference coordinate instruct) will go back the machine origin. It's useful in backlash compensation and quad-peak error compensation and home grid function

Set the parameter is 5: (Rotary axis E)

Machine coordinate and absolute coordinate are linear axes.

The unit in Metric coordinate system and inch coordinate system both are degree.

G28 and G30 (reference coordinate instruct) will go back the machine origin.

It's useful in backlash compensation and quad-peak error compensation and home grid function

Setting	1	2	4	5	3 (Note 1)
value					
Workpiece	0~+360°		0~±360	000°	0~±360°,over
coordinate					±360° back to 0°
display					
Machine	0~+360°			0~±360000°	0~±360°,over
coordinate					±360° back to 0°
display					
Absolute	The shortest	Use command	The sam	ne as linear	Direct move to
instruction	distance	signal (+) or (-)	axis beh	avior, move	goal position
	(within	as moving	to comr	nand position	(within 2
	halfcircle)	direction,	(mayb	e over 1	circle)
		moving to the	circle)		
		close command			
		corresponding			
		angle position			
		(within one			
		circle)			
Increment	Use command	signal (+) or (-) as	moving c	lirection. Do inc	crement
instruction	movement.				
Reference	Move to middl	e point by increme	ent or ab	solute type con	nmand,
position	from middle p	oint back to origin	. (EX: Ma	chine coordinat	e positioning)
return					
Machine	The shortest d	istance(within hal	f circle)	The same as	Direct move to
coordinate				linear axis	goal position
positioning				behavior	(within 2
				(maybe	circle)
				over 1	
				circle)	

Table 31: Type of servo axis setting

Note1: Type C (Setting value is 3) is the specification for special purpose machine.

No	Descriptions	Range	Unit	Initial	Activate method
211~212	Axis dual feedback servo	[0 ~ 3]	-	0	restart
241 243	channel no.	[0~3]			

■ This parameter is used to define the actual axis number that is used to receive dual feedback signal from ruler. X-axis corresponds to 1, Y-axis corresponds to 2, and Z-axis corresponds to 3.

■ NOTE: With each servo axis that wants to set up a dual feedback, it needs two hardware ports on the servo card. In which, the first port is applied to send command from FBs-30GM and receive the encoder feedback of encoder. The second port is applied to receive the ruler's (optical encoder) feedback. Therefore, please check whether the hardware ports are enough to set up a dual feedback control system.

No	Descriptions	Range	Unit	initial	Activate method
261 ~ 262	Axis dual feedback	[10~	Dulso /mm	250	rocot
201 203	resolution	2500000]	Fuise/IIIII	230	Teset

■ This parameter is used to set the resolution of ruler feedback of each servo axis. Note that this setting value is resolution for single phase (A or B phase)

Setting unit is pulse/mm for linear axis and is pulse/rev for rotation axis

Example:

1. Assume that the ruler resolution is 1 mm/pulse (1 mm/1000pulse), with scaling factor of 4 (Pr30x=4). Thus, parameters Pr26x is set to (1000/4) =250.

2. Assume that the ruler resolution is 10 um/pulse (1mm/100pulse), with scaling factor of 4 (Pr30x=4). Thus, parameters Pr26x is set to (1000/4) =25.

3. Assume that the rotary optical encoder resolution is 10 mdeg/pulse (1rev/3600000pulse), with scaling factor of 4 (Pr30x=4). Thus, parameters Pr26x is set to (3600000/4) =90000.

No	Descriptions	Range	Unit	initial	Activate method
301 ~ 303	Axis dual feedback scaling factor	[1~4]	-	4	reset

■ This parameter is used to define the dual feedback encoder scaling factor and it can be set to 1, 2 or 4.

No	Descriptions	Range	Unit	initial	Activate method
401	Cutting acceleration time	[0 ~ 60000]	ms	300	reset

■ Set each axis under G01/G02/G03/G31 mode, this parameter is the spending time on compound feedrate accelerates to Pr405. In other words, this parameter and Pr405 will determine maximum compound acceleration.

$$A_{max} = \frac{\frac{Pr405}{60}}{\frac{Pr401}{1000}} \left(\frac{mm}{sec^2}\right)$$

No	Descriptions	Range	Unit	initial	Activate method
402	Acceleration accelerated to 1G time	[1~60000]	ms	150	reset

■ Set each axis under G01/G02/G03 mode, this parameter is the spending time on compound acceleration accelerates to 1G. In other words, this parameter will determine maximum compound jerk.

$$J_{max} = \frac{9.8}{Pr402/_{1000}} \left(\frac{m}{sec^3}\right)$$

No	Descriptions	Range	Unit	initial	Activate method
404	Post cutting bell-shaped		20	20	rocot
404	acceleration time	[0 00000]	1115	20	Teset

■ The parameter can smooth the path of speed that plan before interpolation. The shake will be restrained. Suggest value is 20msec ~ 30msec.

EX:

Figure 68: Speed-time before interpolation

The figure is speed-time before interpolation. If the post cutting bell-shaped acceleration time is 0, the option is disabled. If the parameter is existed, the command will be smoothed. EX: $Pr404 \rightarrow 5ms$

Interpolation	Command before	Command after
time (ms)	interpolation (pulse)	interpolation (pulse)
0	0	0
0	0	0
0	0	0
0	0	0
1	5	(0+0+0+0+5)/5=1
2	6	(0+0+0+5+6)/5=2.2
3	9	(0+0+5+6+9)/5=4
4	12	(0+5+6+9+12)/5=6.4
5	11	(5+6+9+12+11)/5=8.6
6	10	(6+9+12+11+10)/5=9.6
7	10	(9+12+11+10+10)/5=10.4
8	9	(12+11+10+10+9)/5=10.4
9	9	(11+10+10+9+9)/5=9.8
10	9	(10+10+9+9+9)/5=9.4
11	7	(10+9+9+9+7)/5=8.8
12	5	(9+9+9+7+5)/5=7.8
13	0	(9+9+7+5+0)/5=6
14	0	(9+7+5+0+0)/5=4.2
15	0	(7+5+0+0+0)/5=2.4
16	0	(5+0+0+0)/5=1

Table 32: Interpolation time and command

The command of speed is smoothed. The post cutting bell-shaped acceleration time can smooth the command and restrain the speed change.

No	Descriptions	Range	Unit	initial	Activate method
405	Maximum cutting feedrate	[6 ~ 3600000]	mm/min	5000	reset

Set the maximum cutting feedrate for compound speed.

No	Descriptions	Range	Unit	initial	Activate method
406	Maximum corner	[6 ~		n 500	reset
	reference feedrate	3600000]			

■ Set the maximum corner feedrate. FBs-30GM will check the length of corner and decrease the speed before into the corner.

■ The parameter is the max speed at corner that the angle is 120 degree. Suggest value is 200mm/min.

■ The parameter is bigger and the speed is faster but the precise is worse. The parameter is smaller and the speed is slower but the precise is better.

Note:

If the program has G09 in position check, control will cancel decrease speed plan. If you don't need corner decrease speed, Parameter 406 and 408 could set a huge value and the system will turn a corner with a high speed. Please Pr404 set bigger to protect tool and avoid the huge shake.

No	Descriptions	Range	Unit	initial	Activate method
408	Arc cutting reference	[0~	mm/	500	recet
	feedrate at radius 5 mm	3600000]	min	500	reset

• Servo lag will make the arc path shrink during the arc cutting. The shrink error is: $m^2 W^2$

$$E = \frac{T^2 V^2}{2R}$$

(T: servo system time constant. V: tangent velocity. R: radius)

■ We can calculate the speed with the radius by the function when shrink error and servo character is the same.

$$\frac{V}{V_{ref}} = \sqrt{\frac{R}{R_{ref}}}$$

(Circular velocity is direct proportion to square of circular radius) Reference radius Rref=5mm. Using the Rref to set the circular velocity Vref.

Normal tool suggest setting Vref=500mm/min.

Figure 69: Reference radius and velocity

■ Note:

Huge curvature path and short block path both are clamped by Pr408. The same curvature path will clamp to the same velocity because of the Pr408. The following error will become small because of the velocity become small. The precise will become higher. If the following is still too big, please turn on the feed forward percentage (Pr581 ~ Pr583). It will send compensation for servo lag, but it makes bigger acceleration and shake. To solve the problem, cutting acceleration time (Pr401) can set longer.

If the high speed make centrifugal force is too bigger, the tool may shake. Before set Pr408, please check the machine rigidity to avoid shake.

No	Descriptions	Range	Unit	initial	Activate method
410	MPG acceleration time	[10 ~ 60000]	ms	200	reset

No	Descriptions	Range	Unit	initial	Activate method
411	Rapid Travel G00	[0~1]	-	0	reset

Rapid Travel G00:

0: Linear;

1: Independent.

No	Descriptions	Range	Unit	Initial	Activate method
413	Reserve local coordinate	[0 ~ 2]	-	0	reset
	G92(G92.1) after reset				

■ Set reserve local coordinate G92(G92.1) after reset:

0: After reset, it will not reserve local coordinate;

1: After reset, it will reserve local coordinate, but restart is not;

2: After reset or restart, it will not reserve local coordinate.

No	Descriptions	Range	Unit	Initial	Activate method
414	Reserve Workpiece Coordinate System after reset	[0 ~ 2]	-	0	reset

■ Reserve Workpiece Coordinate System after reset:

- 0: After Reset reserve to default;
- 1: After Reset no reserve to default;
- 2: After Reset or Turn-OFF no reserve to default.

No	Descriptions	Range	Unit	initial	Activate method
421 ~ 423	Axis cutting in-position window	[0 ~ 300000]	BLU	30	reset

■ When program include G09, the system will check the position of block.

■ After system stop sending command below 2second, system will check motor feedback of position in the window. If it is in the range, systems send command for next block. If it spend time over 2sec, system alarm 『Exact Stop wait too long』

No	Descriptions	Range	Unit	initial	Activate method
441 ~ 443	Axis rapid travel (G00) acceleration time	[0 ~ 60000]	ms	200	reset

■ Set each axis under G00 mode, Pr441 ~ Pr443 are the spending time on each axis velocity accelerate to Pr461 ~ Pr463 respectively. In other words, Pr441 ~ Pr443 and Pr461 ~ Pr463 will determine maximum compound acceleration.

$$A_{max} = \frac{Pr461 \sim /_{60}}{Pr441 \sim /_{1000}} \binom{mm}{sec^2}$$

No	Descriptions	Range	Unit	initial	Activate method
461 ~ 463	Axis max. rapid travel (G00) feedrate	[6 ~ 360000]	mm/ min	10000	reset

• Set each axis under G00 mode, this parameter represent the max allowable feedrate when G00 override is not F0.

reset

■ When program include G09, the system will check the position of block.

■ After system stop sending command below 2second, system will check motor feedback of position in the window. If it is in the range, system sends command for next block. If it spend time over 2sec, system alarm 『Exact Stop wait too long』

No	Descriptions	Range	Unit	initial	Activate method
501 ~ 503	Axis rapid travel (G00) F0 feedrate	[0 ~ 15000]	mm/ min	0	reset

■ Set each axis under G00 mode, this parameter represent the max allowable feedrate when G00 override is F0.

No	Descriptions	Range	Unit	initial	Activate method
521 ~ 523	Axis JOG feedrate	[6 ~ 360000]	mm/ min	6000	reset

■ Set each axis under JOG mode, this parameter represent each axis maximum feedrate.

■ On MPG mode, if Pr661~Pr663 are zero, then MPG movement maximum feedrate also dominated by Pr521~Pr523.

No	Descriptions	Range	Unit	initial	Activate method
5/1 ~ 5/2	Axis cutting acceleration	[0 ~ 60000]	ms	50	reset
541 545	time	[0 00000]	1115	50	reset

■ Set each axis under G01 mode, Pr541~Pr543 are the spending time on compound feedrate accelerate to Pr621~Pr623 respectively. In other words, Pr541~Pr543 and Pr621~Pr623 will determine each axis maximum jerk.

$$A_{max} = \frac{Pr621 \sim /_{60}}{Pr541 \sim /_{1000}} (mm/_{sec^2})$$

No	Descriptions	Range	Unit	initial	Activate method
561 ~ 563	Axis loss pulse check window	[50 ~ 300000]	BLU	100	reset

■ After system stop sending command over 1second, system will check the difference between command and motor feedback. If it is over the range, system alarm 『Lost position』.

No	Descriptions	Range	Unit	initial	Activate method
F01 ~ F02	Axis velocity feed forward	[-10000 ~	° 0	rocot	
201 202	percentage	1000]	/0	0	Teset

■ FBs-30GM use the following formula to adjust command. Then this method will change Kp and improve servo lag phenomenon. When bigger Pr581~Pr583, servo lag amounts are smaller, but user need to notice that it will cause machine vibration.

$$K_p' = \frac{Pr181}{1 - \frac{Pr581}{100}}$$

No	Descriptions	Range	Unit	initial	Activate method
CO1 ~ CO2	Axis corner reference	[6 ~	mm/min	260000	reset
001 005	feedrate	3600000]		300000	Teset

■ The parameters are set for corner feedrate. FBs-30GM will check the length of corner and decrease the speed before into the corner.

■ The parameters are the max speed at corner that the angle is 120 degree. Suggest value is 60mm/min.

■ The parameters are bigger and the speed is faster but the precise is worse. The parameter is smaller and the speed is slower but the precise is better.

Note:

If the program has G61 or G09 in position check, control will cancel decrease speed plan.

If you don't need corner decrease speed, Parameter 406 and 408 could set a huge value and the system will turn a corner with a high speed. Please Pr404 set bigger to protect tool and avoid the huge shake.

If the program has auxiliary axis or rotation axis, please set Pr601~Pr623 to avoid machine vibration. Suggest value is 500.

No	Descriptions	Range	Unit	initial	Activate method
621 ~ 623	Axis maximum cutting feedrate	[6 ~ 3600000]	mm/min	5000	reset

■ Set each axis under G01 mode, Pr621~Pr623 are the each axis maximum cutting feedrate.

No	Descriptions	Range	Unit	initial	Activate method
641 ~ 643	Axis cutting bell-shaped acceleration time	[1~60000]	ms	10	reset

■ Set each axis under G00/G01 mode, Pr621~Pr623 are the spending time on each axis acceleration accelerates to 1G. In other words, this parameter will determine each axis maximum jerk.

$$J_{max} = \frac{9.8}{Pr641 \sim /_{1000}} \left(\frac{m}{sec^3} \right)$$

No	Descriptions	Range	Unit	initial	Activate method
661 ~ 663	Axis MPG feedrate	[0 ~ 3600000]	mm/min	6000	reset

- Pr661~Pr663: axis MPG feedrate upper bound.
- When parameter is set to 0, it means using JOG feedrate as MPG feedrate.

No	Descriptions	Range	Unit	initial	Activate method
821~823	Speed of first part homing	[0 ~ 240000]	mm/ min	10000	reset

■ On Home search process, this parameter will determine the maximum moving velocity before touching Home DOG switch.

No	Descriptions	Range	Unit	initial	Activate method
841~843	Speed of second part homing	[0 ~ 240000]	mm/ min	2000	reset

■ On Home search process, this parameter will determine the maximum moving velocity after leaving Home DOG switch.

No	Descriptions	Range	Unit	initial	Activate method
861~863	Negative homing direction	[0,1]		0	reset

■ On Home search process, this parameter will determine the direction of Home DOG switch.

No	Descriptions	Range	Unit	initial	Activate method
		[-999999999			
881~883	Axis home offset	~	BLU	0	reset
		999999999]			

■ The parameter have to fit Pr961~Pr980(Home search method) 。

■ Pr961~Pr963 is 0 or 1: When FBs-30GM find the motor index, tool will move to specialize point that is the offset position. After arriving the point, machine coordinate will be zero.

■ Pr961~Pr963 is 2: When FBs-30GM find the motor index, tool will move to point that is the index. After arriving the point, machine coordinate will be offset value.

- Pr961~Pr963 is 3: When FBs-30GM leave DOG sensor, tool will move to specialize point that is the offset position. After arriving the point, machine coordinate will be zero.
- Home Offset Action

Figure 70: Home Offset Action

Figure 71: Home Offset Action (cont.)

No	Descriptions	Range	Unit	initial	Activate method
901 ~ 903	Axis zero speed check window(count)	[3 ~ 10000]	Pulse	3	reset

■ When FBs-30GM doing home search, touch the HomeDog, the second moving and Servo-On, motor will check the zero speed stop of state. The parameter is the value of range. If encoder feedback is in the range, FBs-30GM deems the motor is stop, or alarm and stop.
No	Descriptions	Range	Unit	initial	Activate method
921 ~ 940	Home dog polarity (0:positive;1:negative)	[0~1]	-	0	reset

■ Set HOME DOG polarity, the normal write is NORMAL CLOSE, but in the advance switch case is NORMAL OPEN.

No	Descriptions	Range	Unit	initial	Activate method
041 ~ 042	Enable axis home grid	[0, 1]		0	rocot
941 943	function	[0-1]	-	0	Teset

■ Enable axis home grid function

0: disable

1: enable

■ Enable axis home grid function. If the grid value is smaller than 50% (motor half-revolve). FBs-30GM will ignore this index signal and find the next index to be original signal.

■ Home grid:

When motor leave home dog and move to the first index of motor, motor rotate the revolution. It show on the system variable $56\sim59$. The unit is percent. 25 is mean 1/4 rev. 50 is mean 1/2 rev.

■ When HOME search method is 3, this function will disable.

No	Descriptions	Range	Unit	initial	Activate method
961 ~ 963	Home mode of each axis	[0~3]	-	0	reset

■ These parameters are used to decide the HOME search method of each axis:

0: By HomeDog sensor, suitable for linear axis or rotary axis witch the proportion of motor and pitch is not 1. After HOME, table moved on the machine position which offset had added;

1: By reference index of motor, suitable for linear axis or rotary axis witch the proportion of motor and pitch is 1;

2: By HomeDog sensor, suitable for linear axis or rotary axis witch the proportion of motor and pitch is not 1. After HOME, motor laid on index;

3: By HomeDog sensor, but no encoder index signal. Suitable for linear axis or screw and motor gear ratio is not integer for rotary axis. When axis direction finds DOG sensor for Home shift processing, direct move to machine coordinate position. After arriving position, clear machine coordinate position to 0, then it is called finish Home search action;

No	Descriptions	Range	Unit	initial	Activate method
981 ~ 983	Axis homing 2nd protect revolution(encoder type)	[1 ~ 999999]	Rev	5	reset

These parameters are used to determine the numbers of pitches when searching home, if motor can't leave Home Dog after moving over the number of pitches, FBs-30GM will send alarm message.

■ These parameters are effective when Pr201 ~ Pr203 are set to 0 and Pr961 ~ Pr963 are set to 0, 2 or 3.

No	Descriptions	Range	Unit	initial	Activate method
1001 ~ 1003	Axis fast home return function	[0~1]	-	0	restart

■ These parameters are used to determine whether to enable fast home return function of each axis and are off by default in order to be compatible with HOME mode. Enable the axis fast home return function (Pr100x = 1) and the specifications are as follows:

- When the machine has not yet executed the first reference searching, the mechanical origin has not been established (M1471 ~ M1473 Off). If carrying out reference searching, FBs-30GM will follow Pr96x's setting to decide the reference searching method. During reference searching, the first and the second homing speed will be determined by Pr82x, Pr84x.
- After the first reference searching, the mechanical origin has been established (M1471 ~ M1473 On). If FBs-30GM carries out reference searching again, the machine will not go back to the mechanical origin with the previous reference searching method, but do rapid positioning (G00) to the origin directly.

No	Des	criptions	Range	Unit	initial	Activate method
1221 ~ 1223	Backlash	compensation	[0 ~ 2]		0	rocot
	start		[0 2]	-	0	Teset

Set Backlash compensation start or not.

0: OFF;

- 1: Linear Guideway ON;
- 2: Box Guideway ON.

No	Descriptions	Range	Unit	initial	Activate method
1241 ~ 1260	G00 backlash compensation	[-999999 ~	BIII	0	reset
	value	999999]		Ŭ	reset

■ The parameter is machine tool on the high speed (G00) and move to a point with negative and positive direction. The backlash is the error of stop.

No	Descriptions	Range	Unit	initial	Activate method
1201 ~ 1202	G01 backlash compensation	[-999999 ~			rocot
1201 1205	value	999999]	BLU	0	Teset

■ The parameter is machine tool on the low speed (F10) and move to a point with negative and positive direction. The backlash is the error of stop.

No	Descriptions	Range	Unit	initial	Activate method
1281 ~	Packlach critical speed	[0 ~ 2000]	mm (min	800	rocot
1283	Backlash chilical speed	[0 5000]		800	Teset

■ The backlash and the speed is a relation of exponent. The parameter set for backlash coverage speed. If the value is bigger, the coverage speed is faster.

■ When Pr1281 ~ Pr1283 are equal to zero, FBs-30GM will still follow default value 800 to process compensation amount estimation.

Figure 72: Backslash amount vs feedrate

No	Descriptions	Range	Unit	initial	Activate method
1201 ~ 1202	Pitch error compensation	[0 ~ 2]	_	0	reset
1501 1505	type	[0 2]		U	reset

Set the parameter to decide to start compensation or not

- 0: No compensation;
- 1: Unidirection;
- 2: Bidirection.

No	Descriptions	Range	Unit	initial	Activate method
1221 ~ 1222	Pitch error compensation	[1000 ~	рш	50000	rocot
1521 1525	Interval	999999999]	BLU	50000	reset

■ After interval compensation start, according to this setup, set the pitch of compensation.

No	Descriptions	Range	Unit	initial	Activate method
1241 ~ 1242	Table index for reference	[1 ~ 100]	_	50	rosot
1341 1343	(home)	[1 100]	-	50	Teset

■ After interval compensation start, what number is mechanical origin in table for compensation, suggest 50.

No	Descriptions	Range	Unit	initial	Activate method
1401 ~ 1403	Axis mechanical compensation time constant	[0 ~ 60000]	ms	0	reset

■ Mechanical compensation (backlash, pitch error) is described as an exponential curve. This parameter is used to determine the time constant (ms) of exponential curve. The lower the setting value is, the lesser time needed to complete the compensation. However, it may find the machine vibrates during operation if the time constant is too low. The suggested setting value is 100ms.

Figure 73: Mechanical compensation amount vs time

No	Descriptions	Range	Unit	initial	Activate method
1421 ~ 1423	Axis max. static dual error	[0~100000]	BLU	1000	reset

■ This parameter is used to define the maximum allowed error between motor encoder and ruler's (optical encoder) feedback signal in static state.

No	Descriptions	Range	Unit	initial	Activate method
2001	MPG 4th scaling factor	[10 ~ 1000]	LIU	100	reset

■ Set the MPG 4th of pulse to the LIU.

■ The min unit of LIU, the unit will be controlled by mode of metric or inch.

No	Descriptions	Range	Unit	initial	Activate method
2041	MPG resolution (Pulse/rev)	[100 ~ 2500000]	-	100	reset

No	Descriptions	Range	Unit	initial	Activate method
2051	MPG scaling factor	[1~4]	-	4	reset

No	Descriptions	Range	Unit	initial	Activate method
2401 ~ 2406	1 st Software travel limit	[-9999999999 ~ 99999999999]	BLU	-9999999999 9999999999	reset

■ After homing, control use axis positive software limit.

	ů,				
No	Descriptions	Range	Unit	initial	Activate method
2441 ~ 2446	2nd Software travel limit	[-9999999999 ~ 99999999999]	BLU	-9999999999 9999999999	reset

■ The second software travel limit is turned on or off by M1423.

No	Descriptions	Range	Unit	initial	Activate method
2481	2nd software limit persistency	[0~2]	-	0	reset

This parameter is used to set the second software limit persistency:
0: Stop FBs-30GM to restore the limit to the settings in Pr2441 ~ 2446
1: Stop FBs-30GM to retain the limit set by MACRO variables #1941 ~ #1943
(2nd software positive limit), #1961 ~ #1963 (2nd software negative limit).
2: Stop or turn on/off FBs-30GM to retain the limit set by MACRO variables #1941 ~ #1943
#1941 ~ #1943 (2nd software positive limit), #1961 ~ #1963 (2nd software negative limit).

No	Descriptions	Range	Unit	initial	Activate method
		[-9999999999			
2801 ~ 2803	2nd reference point	~	BLU	0	reset
		9999999999]			
		[-9999999999			
2821 ~ 2823	3rd reference point	~	BLU	0	reset
		9999999999]			
		[-9999999999			
2841 ~ 2843	4th reference point	~	BLU	0	reset
		9999999999]			

No	Descriptions	Range	Unit	Initial	Activate method
3202		[100 ~	0.001	5000	restart
	iyo scan time	5000]	0.001115		

■ After system start, the scan time of I/O card.

No	Descriptions	Range	Unit	Initial	Activate method
3203	Interpolation time interval	[500 ~	0.001ms	5000	restart

After system start, when each axis direction movement, command time interval.

No	Descriptions	Range	Unit	Initial	Activate method
3207	Feedrate override selection	[1 ~ 2]	-	2	restart

Set the override type:
1: override is reality percentage,
range: -200% ~ +200 % (industrial mechanical setup);
2: override default steps,
range: 1 ~ 20.

No	Descriptions	Range	Unit	initial	Activate method
3221	Debug level	[0 ~ 2]	-	0	reset

■ When MACRO program execute, single step block execute or not.

0: disable;

1: enable;

(M1416 have to be ON before program start)

No	Descriptions	Range	Unit	initial	Activate method
3241	Decimal point type	[0~1]	-	0	restart

Set the parameter for decimal point type:
0: standard, 1=0.001mm;
1: pocket, 1= 1mm.

No	Descriptions	Range	Unit	initial	Activate method
2005	Static dual feedback error	[0 ~	1000	1000	rocot
3803	timeout	60000]	1115	1000	Teset

■ This parameter is used to define the waiting time before FBs-30GM switches to static state when it stops sending command.

Figure 74: Static dual feedback error timeout

No	Descriptions	Range	Unit	initial	Activate method
2807	Destination not on arc	[0 ~ 1000]	рш	-	rocot
5607	check window	[0 1000]	BLU	ſ	Teset

■ Set the error of radius from start-point to end-point. If the error is larger than this parameter, FBs-30GM alarms.

No	Descriptions	Range	Unit	initial	Activate method
3811	Start address of persist	[0 ~ 400]	-	0	restart
5011	working global variable	[0 400]			

■ 0: @1 ~ @400 data all reset after power off;

1 ~ 400: Start address of persist working global variable.

EX: setting 100, @100 ~ @400 data will persist after power off.

No	Descriptions	Range	Unit	initial	Activate method
3817	Fatal dual feedback error	[0 ~ 100000]	BLU	10000	reset

■ This parameter is used to define the maximum allowed dual error between motor encoder and ruler's (optical encoder) feedback signal in dynamic state.

If setting value is 0, this checking function is inactive.

No.	Description	Range	Unit	Default	Activate method
2010	Dual feedback self-detect	[0 ~ 50]	Pulso	0	reset
5010	error (pulse)	[0 50]	FUISE	0	Teset

■ After activating dual feedback, the A/B pulse number between two indexes are recorded and self-checking every time FBs-30GM encounters an index from ruler (optical encoder), if the difference exceeds the value set by this parameter, FBs-30GM shall pop-up MOT-40 "Dual feedback self-detect error exceed".

■ If the setting value is 0, the self-checking function shall be disabled

■ Generally, it is applied to all types of optical encoder including both equal distance Optical encoder and distance code Optical encoder.

Limitation

> This function is only enabled after the axis completes returning reference point (search HOME)

➤ When a problem occurs, the system shall not pop-up alarm immediately, but hold until the 5th index is received, then only the alarm pop-up. In other words, if the movement range is within 4 indexes, such detection function is inactive

> Default index's width set by the system is 5 Pulses

No	Descriptions	Range	Unit	initial	Activate method
3821	Coupling master axis number	[0 ~ 3]	-	0	restart
3822	Coupling slave axis number	[0 ~ 3]		0	restart

■ Pr3821 and Pr3822 are set to coupling axis number.

■ EX: When Pr3821 = 1 (it means X axis) and Pr3822 = 2 (it means Y axis), then Y axis movement will follow X axis, and the moving ratio according to Pr3823 and Pr3824.

No	Descriptions	Range	Unit	initial	Activate method
3823	Coupling master axis ratio factor	[1 ~ 999999]		0	restart
3824	Coupling slave axis ratio factor	[-9999999999 ~ 99999999999]		0	restart

■ Pr3823 and Pr3824 are set to the moving ratio for synchronous moving axis direction.

■ EX: When Pr3823 = 1 and Pr3824 = 2, it implies "if master axis moves 1mm, then slave axis moves 2mm".

No	Descriptions	Range	Unit	initial	Activate method
3825	Coupling type	[0 ~ 5]		0	restart

Pr3825 set the enable timing of the two couple axes.

0: cancel couple

1: Machine coupling, coupling starts from power on and can't cancel.

2: PeerSynchronization coupling:

■ Coupling starts from power on and M1422 on. When M1422 is off, coupling is canceled.

■ FBs-30GM adds command from master axis and slave axis and sends to two axes at the same time.

3: Superimposition coupling

■ Coupling starts from power on and M1422 on. When M1422 is off, coupling is canceled.

■ Superimposition coupling is slave axis superimpose on the master axis. When the command makes for master axis, both of the axis will move. When commands make for slave axis, the slave axis will move and relative to the position of the master axis.

4: MasterSlaveSynchronization coupling

■ Coupling starts from power on and M1422 on. When M1422 is off, coupling is canceled.

■ MasterSlaveSynchronization coupling is FBs-30GM will get the command from master axis then send two axes to execute.

5: One to many coupling

■ Coupling starts from power on and M1422 on. When M1422 is off, coupling is canceled.

■ Similar to PeerSynchronization coupling, FBs-30GM adds command from master axis and slave axis and sends to all axes to execute.

 Bit on, the axis is coupling. Bit 1: X axis to carry 2 Bit 2: Y axis to carry 4 Bit 3: Z axis to carry 8 When Pr3822 is 12(12=4+8), the slave axes are Y axis and Z axis.

■ Note: When use one to many coupling, master axis ratio and slave axis ratio become 1:1. Settings of Pr3823 and Pr3824 are not useful.

No	Descriptions	Range	Unit	initial	Activate method
3826	Coupling couple time(ms)	[0~60000]	ms	0	reset
3827	Coupling decouple time(ms)	[0 ~ 60000]	ms	0	reset

■ Pr3826: Coupling couple time

■ Pr3827: Coupling decouple time

No	Descriptions	Range	Unit	initial	Activate method
2027	Initial Command Mode	[0 ~ 2]		0	rostart
5057	(0:default;1:G90;2:G91)	[0 2]	-	0	restart

Default is G90.

No	Descriptions	Range	Unit	initial	Activate method
8001 ~ 8600	Pitch error compensate,	[-9999999 ~	рни	0	rocot
8001 8000	compensation table	999999]	BLU	0	Teset

The parameter set for the compensation of the pitch error. The value is modulus. Compensation = Command – reality

Pr8001 ~ 8100 are X axis positive direction pitch error compensation table 1 ~ 100. Pr8101 ~ 8200 are X axis negative direction pitch error compensation table 1 ~ 100. Pr8201 ~ 8300 are Y axis positive direction pitch error compensation table 1 ~ 100. Pr8301 ~ 8400 are Y axis negative direction pitch error compensation table 1 ~ 100. Pr8401 ~ 8500 are Z axis positive direction pitch error compensation table 1 ~ 100. Pr8501 ~ 8600 are Z axis positive direction pitch error compensation table 1 ~ 100.

Ex:

Command value is 20000 BLU, machine value is 20002 BLU then the compensation value is -2

Command value is 40000 BLU, machine value is 39999 BLU then the compensation value is 1

Command value is -20000 BLU, machine value is -20002 BLU then the compensation value is 2

Command value is -40000 BLU, machine value is -39999 BLU then the compensation value is -1

Instruction of pitch error compensation

Manufacturing error of screw leads to the inconsistence between command and actual motion of working table. However, because this error is a constant value, it can be measured by the equipment and setting parameters into FBs-30GM to compensate this error in the machining process.

Pr1301 ~ 1303 determine whether Pitch error compensation function is enabled.

Pr1321 ~ 1323 determine the value of basic pitch error compensation.

Pr1341 ~ 1343 determines the starting compensation no. of original point in pitch compensation table. For every axis FBs-30GM provides totally 100 compensation points, the default and recommended value is 50.

Steps for measurement of pitch compensation parameter

Step 1: Close all mechanical compensation (pitch – Pr130x; backlash – Pr122x, Pr124x, Pr126x, Pr128x; sharp corner – Pr136x, Pr144x), and do the home search action

Step 2: Load the attachment example program, and then with the measuring instruments measures the pitch error of every single pitch.

Step 3: According to pitch compensation type (one-way / two-way), and stroke direction of axis (home direction positive / negative), select the corresponding fill in format.

One-way pitch compensation (just fill in positive table)

Regardless of moving direction of axes, FBs-30GM will send all positive direction values in the reference table as the compensation values at the same point of the stroke.

Axial stroke is in the positive direction of home:

Moves the machine away from home and progress to the positive direction of machine coordinate, measures the pitch error and enters the error into Pr800x "Positive absolute compensation pitch error table". Note that the fill in serial no. of pitch error compensation is to the higher direction.

Mo	Move the machine away from home and progress in the positive direction of																			
mad	chin	e co	ordiı	nate	anc	l Pr1	.34x	=50	fil	ll in	Pos.	table	e 50,	, 51.	59	, 60				
40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
										0										Ĵ

Axial stroke is in the negative direction of home:

Moves the machine away from home and progress to the negative direction of machine coordinate, measures the pitch error and enters the error into Pr800x "Negative absolute compensation pitch error table". Note that the fill in serial no. of pitch error compensation is to the lower direction.

Mo	Nove the machine away from home and progress in the negative direction of																			
mae	nachine coordinate and Pr134x=50 fill in Pos.table 50,4941, 40																			
40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
ł										0										

Two-way pitch compensation (fill in positive & negative table)

According to the moving direction of machine, FBs-30GM will determine to use positive or negative table value at the same point of stroke.

Axial stroke is in the positive direction of home: Moves the machine away from home and progress to the positive direction of machine coordinate, measures the pitch error and enters the error into Pr800x "Pos. abs. comp. pitch err. table". Revert the machine progress direction and move back to home, measures the pitch error and enters the error into Pr810x "Neg. abs. comp. pitch err. table".

Мо	Nove the machine away from home and progress in the positive direction of																			
mac	nachine coordinate and Pr134x=50 fill in Pos. table 50, 51, 59, 60																			
40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
										0										1
										0		1	1	1	1	I	1	1	1	
Who tab	en tl I e 60	ne m), 59	nach , 5	ine 1, 5	prog 0	ress	dire	ectio	on is	reve	ert a	nd m	iove	bac	k to	hor	ne	fill	in N	eg.
40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
1																				

Axial stroke is in the negative direction of home:

Moves the machine away from home and progress to the negative direction of machine coordinate, measures the pitch error and enters the error into Pr810x "Neg. abs. comp. pitch err. table". Revert the machine progress direction and move back to home, measures the pitch error and enters the error into Pr800x "Pos. abs. comp. pitch err. table".

Mo	Nove the machine away from home and progress to the negative direction of																			
ma	nachine coordinate, and Pr134x=50 fill in Neg. table 50, 49, 41, 40																			
40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ŷ	1				1					0										
Wh	en t	he n	nach	ine	prog	ress	dire	ectio	n is	reve	ert a	nd n	nove	bac	k to	hon	ne	fill	in P	os.
tab	le 40), 41	, 4	9, 5	0															
40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
										0										

At last do the experiment again to measure pitch compensation parameter and to verify the effectiveness of compensation.

4. Q&A

Q1: Pitch error compensation function is ineffectiveness

Ans: Pitch error compensation function is only enabled when the home search action is finished.

Q2: Machine is still at inaccurate position after being pitch error compensation.

Ans: The effectiveness of optimize mechanism compensation is depends on the reproducible of mechanism action. Thus, when this phenomenon occurs, please check whether the assembly of mechanism is appropriate.

Appendix III (Alarm ID.)

Operation alarm:

Alarm ID	OP-023	Alarm title	Power break in machining, re-calibrate before machining				
Description	As start r and it wil When rel appear.	nachining, FBs· I be removed v booting, if mac	-30GM will set up machining flag in registry.dat when machining comebacks to ready status. hining flag is not removed, this alarm will				
Possible cause	Discontinue power in machining process.						
Solution	1. Check 2. Reboo	whether mach t.	ining data setting is correct.				

Motor alarm:

Alarm ID	MOT-005	Alarm Title	DDA command overflow								
	FBs-30G	∕I sends too m	nany commands. In the one interpolation time								
Description	interval,	if software cal	culates that the number of commands to be sent								
	is out of	out of 2047 pulses, this alarm will appear									
	1. DD	A software tin	ne setting value (interpolation time interval,								
	para	parameter Pr3203) is too long									
Possible	2. Mo	tion velocity i	s too fast								
Cause	3. Ser	vo resolution	is set too high								
	4. Backlash compensation or pitch compensation is too large										
	5. Cor	npensation is	enabled before booting								
	1. Rec	ommend that	low interpolation time interval setting								
	(par	ameter 3203)	is not less than 2000								
	2. Rec	luce the veloc	ity to do the test if max rapid travel feedrate is to								
Solution	high	(Pr461-Pr463	3)								
Solution	3. Rec	resolution setting to do test (encoder and									
	FBs-	30GM Pr61-P	r63)								
	4. If m	echanical cor	npensation time constant is set (parameter 1401								
	~ 14	20), cancel th	e mechanical compensation setting to do test								

		and find the best setting.
	5.	If system had set feed forward (parameter 581 $^{\sim}$ 600), cancel feed
		forward setting to do test and find the best setting.
	6.	Please contact staff of machinery manufacturer to solve problem
		In order to achieve the multi-axis coordinated control, FBs-30GM
Moro		uses DDA (Digital Differential Analyzer), Cycle Time of DDA is set by
description		parameter Pr3203. In one Cycle time of DDA, every axial is allowed
description		to send maximum 2047 pulses. Once exceeding this value,
		FBs-30GM will send alarm

Alarm ID	MOT-008	Alarm Title	Loss Pulse						
	One secor	nd after sendi	ng command, FBs-30GM will check whether the						
Description	error of fe	edback comr	nand and sending command is in predetermined						
	error rang	or range. If no, FBs-30GM will send alarm.							
	1. Kine	matic occurs	obstruction phenomenon						
	2. Serv	o drive occur	s unexpected Servo ON / OFF						
	3. CPU	board send t	he data to axis card unsuccessfully (CPU board or						
	axis o	card has prob	lem, the contact between CPU and axis card is						
Possible	not g	good)							
Cause	4. The	cable that ser	nds command from FBs-30GM to servo driver has						
	poor	quality or is o	disconnected.						
	5. FBs-	30GM doesn'	t set servo drive alarm check, FBs-30GM						
	conti	inues to send	motion command although the drive is abnormal						
	6. Loca	l interference							

	1.	Do not shut down FBs-30GM when alarm occurs. Please check
		whether the value of No 8, 9, 10 in debug function page is zero
	2.	Check whether the mechanical lubrication system is good.
	3.	Open the cover of axial to check whether foreign matter blocks the
		motion of axial.
	4.	Rotate screw to check whether machine is stuck (loading of driver)
	5.	Check the drive servo-on and the servo-off of power or cable signal
	6.	If the setting value of No 8, 9, 10 in debug function page do not
		change, please take home search action (don't need to reboot),
Solution		after that check whether parameters 24, 25, 26, 40, 41, 42 are
		equal to zero, if the parameters 24, 25, 26 are not equal to zero,
		the feedback loop has problems
	7.	If the parameters 40, 41, 42 are not equal to zero, command
		transmission from FBs-30GM to the motor has been lost pulse.
	8.	If all parameters 24, 25, 40, 41, 42 are not zero, then the
		interference signal is relatively large, specifically in the machining
		process, the setting value of parameters 8, 9, 10 gradually become
		large. The reason is the contact point between CPU board and axis
		card is not good. Try to replace CPU board and axis card
	Set	parameters 561 ~ 580 to check the range of loss pulse
		8[X axis following error value]
		9[Y axis following error value]
		10[Z axis following error value]
More		24[X axis absolute position feedback value]
description		25[Y axis absolute position feedback value]
		26[Z axis absolute position feedback value]
		40[X axis absolute position command value]
		41[Y axis absolute position command value]
		42[Z axis absolute position command value]

Alarm ID	MOT-009	Alarm Title	Servo Driver Alarm						
Description	Drive send	ls out warnin	g signal						
Dessible	Drive alarr	n mostly is b	ecause of external causes. Ex: High temperature,						
Possible	connecting	connecting wire error, internal parameters is set wrong, servo motor is							
Cause	unsuitable	, driver is err	or, etc.						
Solution	Follow the	steps in driv	er's application manual to solve alarm						

Alarm ID	MOT-017	Alarm Title	First Positive software limit exceed			
Description	ment of servo motor exceeds positive software					
Description	limit	limit				
Possible	Ctucko mo					
Cause	Stroke mo	stroke movement of machine table exceeds the setting value				
Colution	Remove alarm, and let axis moves to negative movement out of the					
Solution	stroke pro	tection softw	vare			

Alarm ID	MOT-018	Alarm Title	First Negative software limit exceed			
Description	The end point in movement of servo motor exceeds negative soft					
Description	limit	imit				
Possible	Stroka ma					
Cause	Strokemo	stroke movement of machine table exceeds the setting value				
Colution	Remove alarm, and let axis move to positive movement out of the					
Solution	stroke pro	tection softw	vare			

Alarm ID	MOT-019	Alarm Title	Following error exceed		
	Because of the characteristics of servo, servo motor location,				
Description	way to r	way to respond the command of FBs-30GM immediately, so a slow			
Description	phenom	phenomenon appears, when this latency is not in allowed range,			
	FBs-30G	M will send ou	t the alarm.		
	1. Mo	1. Movement mechanism is not smooth			
Possible	2. Co	Contact wire has poor quality			
Cause	3. Set	Setting values of acceleration and deceleration time are too small			
	4. Sei	vo on off Relay	y is interfered		

	5. Inner loop gain of driver is set too small				
	6. Encoder solution and electric gear ratio is set wrong				
	7. Drive or motor is damaged				
	8. Encoder or line between encoder and FBs-30GM is abnormal				
	9. On debug function page, variable number 23 is not equal to100				
	1. Add lubricating oil to machine				
	2. Use electric meter to check whether wire connecting is correct.				
	3. When FBs-30GM runs dry run mode, open case to check whether				
Colution	servo on off of relay pulses abnormally.				
Solution	4. Increase acceleration and deceleration time (parameter 401)				
	5. Inner loop gain of driver is set too small. For Mitsubishi driver,				
	check Pr37				
	6. Contact to machinery manufacturers for helping				
	Maximum velocity setting value of G00 and home search is equal to				
	setting parameter divided by Kp. This value multiplied by 2 is setting				
	range of FBs-30GM.				
	Reasonable following error: Ferr = speech in command/ setting value of				
	loop gain				
Moro	Alarm allowed values= {max[(velocity of first stage in home search				
description	process), velocity G00 of each axis]/Kp}*2				
description	For example: Speed 1000mm/min, loop gain 30, precision, 1um,				
	Ferr = 1000*1000÷60÷30=555				
	32[X axis reasonable following error]				
	33[Y axis reasonable following error]				
	34[Z axis reasonable following error]				

Alarm ID	MOT-020	Alarm Title	Cannot back control mode when move			
	When eme	When emergency stop or monitor mode (C31 ~) is canceled, in one				
Description	Interpolation time interval (No 3203) if the motor movement exceeds					
	zero speed check window (901), FBs-30GM will send alarm.					
Possible	1. Canc	el instantly n	novement of machine by hand			

Cause	2.	Drive gain is set badly. Therefore, when cancelling instantly, motor			
		will be trembled			
Solution	1.	Avoid man-made movement			
	2.	Check the drive's position loop gain and speed loop gain setting			

Alarm ID	MOT-021	Alarm Title	Must re-homing		
Description	When MO	When MOT-0020 and MOT-0022 appear, FBs-30GM will send alarm			
Possible	MOT -0020[Cannot back control mode when move] or MOT				
Cause	-0022[Home position inaccurate] is triggered				
Solution	See MOT -	0020 or MOT	-0022-alarm		

Alarm ID	MOT-022	Alarm Title	Home position inaccurate		
	After bo	After booting, at the N(N>1) times of searching home, home grid will be			
Description	compare	ed to the result	of the first time searching home, if the error is		
	over 0.1 turn of motor, FBs-30GM will send alarm.				
Possible	6. Ho	5. Homing signal of motor is abnormal			
Cause	7. Sto	Stopper, coupling or bearings is not locked tightly			
	1. Mo	. Move motor in the same direction and observe to check whether			
Solution	position counter index changes normally.				
	2. Ch	eck whether th	e mechanism components are fixed properly		

Alarm ID	MOT-02	B Alarm Title	Fatal following error exceed			
	Because	of the charact	eristics of servo, servo motor location, and			
Description	FBs-300	M cannot resp	ond immediately command, a delay phenomenon			
Description	will app	ear, when this	delay phenomenon is not in allowed limit,			
	FBs-30GM will send alarm.					
	1. Se	1. Servo motor doesn't receive control due to external force				
Dessible	2. Parameter of drive - inner loop gain is too small					
Possible	3. Pa	Parameters of acceleration and deceleration time is set too short				
Cause	4. Er	coder is abnorr	mal or connecting encoder to FBs-30GM is			
	ab	abnormal				

	1.	Check the external motion of machine table				
	2.	2. Check the setting parameter of drive				
Solution	3.	Check the acceleration and deceleration setting of each axis,				
		parameters 401, 541-560				
	4.	Maintain the connection between encoder and servo drives.				
	Maximum velocity value of G00 and home search is equal to setting					
	parameter divided by Kp. This value multiplied by 4 is setting range of					
	FBs-30GM.					
Moro	Reasonable following error: Ferr = speech in command/ loop gain					
description	Alar	m allowed values= {max[(velocity of first stage in home search				
description	prod	cess), velocity G00 of each axis]/Kp}*4				
	32[X axis reasonable following error]					
	33[Y axis reasonable following error]					
	34[Z axis reasonable following error]					

Alarm ID	MOT-02	4 Alarm Title	Fatal dual feedback error exceed		
	If FBs-3	If FBs-30GM discovers that the command and the second command of encoder feedback exceed allowable limit set in Pr3817, FBs-30GM will			
Description	encode				
	send th	is alarm.			
	1. S	ervo motor does	sn't receive control due to movement caused by		
Possible	ех	ternal force			
Cause	2. E	2. External encoder signal is unusual			
	3. E	3. External encoder parameters are set wrong			
	1. C	1. Check external motion mechanism			
	2. C	heck whether e	xternal encoder wire is normal		
Solution	3. C	heck whether ex	xternal encoder corresponding to mechanical axis		
Solution	(P	r241 ~ 260), re	esolution (parameter 261 \sim 280) and feedback		
	SC	aling factor (301	~ 320) are set correctly.		
	4. C	ontact machiner	ry manufactures in case no solution is found.		

Alarm ID	мот	-025	Alarm Title	Positive hardware limit exceed
Description	Serv	o mot	or touches th	ne positive hardware limit in moving process
Dessible	1.	Macl	hine table exe	ceeds protection point
Possible	2.	Hard	ware stroke	switches are damaged or broken
Cause	3.	Inpu	t signal has e	rror
	1.	Use	MPG mode to	o move machine table to opposite direction once
		disco	vering that m	achine table stops on the switch
Colution	2.	lf ma	achine table is	s not on the switch, check IO terminal blocks, 24V
Solution		powe	er supply tern	ninal blocks, connecting wire and components of
		switc	h.	
	3.	Chec	k whether IO	card is abnormal

Alarm ID	MOT-026	Alarm Title	Negative hardware limit exceed		
	Servo m	Servo motor touches the negative hardware stroke limit in moving			
Description	process				
Dossible	1. Ma	chine table ex	ceeds protection point		
Cause	2. Ha	dware stroke	switches are damaged or broken		
Cause	3. Inp	3. Input signal has errors			
	1. Use	e MPG mode t	o move machine table in opposite direction once		
	disc	overing that m	nachine table stops on the switch		
Solution	2. If n	nachine table i	s not on the switch, check IO terminal blocks, 24V		
Solution	pov	power supply terminal blocks, connecting wire and components of			
	swi	ch.			
	3. Ch	eck whether IC) card is abnormal		

Alarm ID	MOT-029	Alarm Title	Miss index in homing		
	When se	When searching home, if motor does not find out motor index signal			
Description	after lea	after leaving home DOG more than 5 pitches, FBs-30GM will send this			
	alarm.				
Dessible	1. Car	i't read the inc	lex signal.		
Possible	2. The	. The setting of homing 2 nd travel feedrate is too fast.			
Cause	3. The	The setting of motor reduction ratio is too big			

	4.	The distance between index signal and HomeDog is more than 5				
		pitches				
	1.	Check motor index wire connecting; observe debug variables				
		48(X), 49(Y), 50(Z) to check whether index signal is read. If no,				
Solution		please check whether connecting wire is correct.				
	2.	Reduce setting value of the homing 2nd travel feedrate				
		(Parameter 841 ~ 843)				
	When searching home, machine will use the velocity setting value of the					
	first stage to move to home DOG, and stop. After that machine moves					
Maria	backward with velocity of the second stage. After leaving home DOG to					
More	mov	e backward, it start to search the nearest motor index signal. In the				
description	second stage, FBs-30GM will calculate according to resolution of					
	enco	encoder. If FBs-30GM leaves home DOG more than 5 pitches and cannot				
	find	out the index signal. FBs-30GM will send alarm.				

Alarm ID	MOT-030	Alarm Title	Zero speed timeout in homing	
Description	When motor touches HomeDog, if motor cannot stop, FBs-30GM will			
Description	send this	alarm.		
Possible	1. Sett	ing drive gain	is not good, so it makes motor vibrating	
Cause	2. Mot	or running ca	uses resonance phenomenon.	
	1. Che	ck the positi	on loop gain and velocity loop gain setting of	
Solution	drive	er		
Solution	2. Star	t the resonan	ce frequency inhibition ability of driver	
	3. Con	tact machiner	ry manufacturers for help.	
	When sea	When searching home, machine will use the velocity setting value of the		
	first stage	e to move to	home DOG, and stop once it meets home DOG.	
	After tha	t machine mo	oves backward with velocity of the second stage.	
More	After leaving home DOG to move backward, it start to search the			
description	nearest motor index signal. At the first stage to find the home DOG,			
	motor will decrease velocity to stop. After 0.1 second command stops, system data 8(X), 9(Y), 10(Z)-error register receives values bigger the			
	zero spee	d check wind	ow(Pr901 ~ Pr920), FBs-30GM will send alarm.	

Alarm ID	MOT-036	Alarm Title	Can't leave home dog	
Description	When sea	rching home,	if motor can't leave HomeDog after moving over	
Description	5 pitches,	FBs-30GM wi	ill send this alarm message.	
Possible	HomoDog	is damaged		
Cause	пошеров	is uamageu		
Solution	Use the electrical multimeter to check whether the sensor			
Solution	is damaged or wiring connection is missing.			
	When sea	rching home,	machine will use the velocity setting value of the	
	first stage	to move to	home DOG, and stop. After that machine moves	
Moro	backward	with velocity	of the second stage. After leaving home DOG to	
doscription	move bacl	ward, it star	t to search the nearest motor index signal. In the	
description	second st	age, FBs-30	GM will calculate according to resolution of	
	encoder. I	f FBs-30GM l	eaves home DOG more than 5 pitches and cannot	
	find out th	e index signa	l, FBs-30GM will send alarm.	

Alarm ID	MOT-041	Alarm Title	Second Positive software limit exceed		
Description	Position va	Position value of end point of servo motor exceeds setting value in			
Description	FBs-30GM- Second Positive software limit				
Possible	The metion				
Cause	The motion of machine table exceeds setting value				
Calution	Remove alarm. Move axis in negative direction out of stroke protection				
Solution	software.				

Alarm ID	MOT-042	Alarm Title	Second Negative software limit exceed		
Description	Position value of end point of servo motor exceeds setting value				
Description	FBs-30GM- Second negative software limit				
Possible	The metic				
Cause	The motion	The motion of machine table exceeds setting value			
	Remove ala	arm. Move a	kis in positive direction out of stroke protection		
Solution	software.				

Alarm ID	MOT-051	Alarm Title	Inhibit cycle start in moving	
Description	Before all manual commands are sent, prohibit starting machining to			
Description	prevent operation error.			
Possible	Manual command (JOG, INJOG, and MPGJOG) cannot be sent			
Cause	successfully.			
Solution	Remove alarm. Wait until machine stops, then start machining			

Compiler alarm:

Alarm ID	COM-001	Alarm Title	EOF in comment	
	The symbol "(*" and "*)" must be used in pairs, if the program uses			
Description	"(*" as the beginning of the comment, but doesn't use "*)" at the end			
	of the comment. System will send alarm			
Possible	Drogramming orror			
Cause	Programming error			
Solution	Using symbol "(*" before command and symbol "*)" after command			

Alarm ID	COM-003	Alarm Title	Syntax error	
Description	MACRO pr	MACRO program has syntax error when FBs-30GM interprets it		
Possible	Drogramm	Programming error		
Cause	Programm			
Solution	Check program syntax according to symbol appears on the screen			

Alarm ID	COM-004	Alarm Title	Illegal variable	
Description	System car	System cannot access variable, this alarm will appear.		
Possible	Change or	Change error variable		
Cause	Change en			
Solution	Check prog	Check program variable and confirm whether system uses that variable		

Alarm ID	COM-005	Alarm Title	expression too complex
Description	MACRO is too complicated,		
Possible Cause	Programming error		

Solution	Check whether logic is clear and correct

Alarm ID	COM-006	Alarm Title	EXIT statement outside loop statement		
Description	The purpos	The purpose of EXIT command is to jump out loop. If EXIT command			
Description	cannot go t	o next loop, s	system will send alarm		
Possible	Drogrammi	Programming orror			
Cause	Programmi	Programming error			
Solution	Check whet	her EXIT com	mand in program is used correctly		

Alarm ID	COM-007	Alarm Title	Repeat loop too deep		
Description	IF Loop command in MACRO such as REPEAT loop, REPEAT loop,				
Description	loop, FOR l	loop, FOR loop repeats more than 10 times, system will send this alarm.			
Possible	Drogrammi	ing orror			
Cause	Programming error				
Solution	Change MACRO program to avoid too many loop commands.				

Alarm ID	COM-008	Alarm Title	absent end of statement character ';'			
Description	Program de	Program doesn't have terminal symbol when MACRO command				
Description	finishes.	inishes.				
Possible						
Cause	Programming error					
Solution	Check MACRO program to confirm whether it has the terminal symbol					

Alarm ID	COM-009	Alarm Title	wrong assignment character ':='		
Description	In program	n program, if Assigning value to symbolic variable does not use the correct notation": $=$ ", system will send alarm			
Description	correct not				
Possible	D				
Cause	Programm	Programming error			
Calution	Check MACRO program to see whether assigning value to symbolic				
Solution	variable is	correct			

Alarm ID	COM-010	Alarm Title	absent right ')'		
Description	In program	In program, notation "(" and ")" must be used in pairs, if "(" lacks ")",			
Description	system will	system will send alarm			
Possible	Drogrammi	ng orror			
Cause	Programming error				
Solution	Check MAC	CRO program	to confirm whether using "(" and ")" is correct		

Alarm ID	COM-011	Alarm Title	absent right ']'	
Description	In program system will	, notation "[" I send alarm	' and "]" must be used in pairs, if "[" lacks "]",	
Possible	Programmi	ing error		
Cause				
Solution	Check MACRO program to confirm whether using "[" and "]" is correct			

Alarm ID	COM-012	Alarm Title	absent 'FOR' keyword in FOR statement		
Description	If FOR loop	If FOR loop in MACRO uses TO to define loop condition incorrectly, this			
_	alarm will a	alarm will appear.			
Possible	Drogrammi	ng orror			
Cause	Programming error				
Solution	Check MAC	CRO program	to confirm whether FOR loop uses TO correctly		

Alarm ID	COM-013	Alarm Title	absent 'DO' keyword in FOR statement			
Description	If FOR loop in MACRO uses DO to define Implement task in loop					
Description	incorrectly,	incorrectly, this alarm will appear.				
Possible	Drogrammi	ngorror				
Cause	Programming error					
Solution	Check MAC	RO program	to confirm whether FOR loop uses DO correctly			

Alarm ID	COM-014	Alarm Title	absent 'END_FOR' keyword in FOR statement
Description	If FOR loop in MACRO doesn't use END_FOR to finish loop, this alarm		
Possible	Programming error		

Cause	
Solution	Check MACRO program to confirm whether FOR loop uses END_FOR

Alarm ID	COM-015	Alarm Title	absent 'UNTIL' keyword in REPEAT statement		
Description	If REPEAT loop in MACRO uses UNTIL to define loop condition				
Description	incorrectly	, this alarm w	vill appear.		
Possible					
Cause	Programmi	Programming error			
Calution	Check MAC	CRO program	to confirm whether using UNTIL in REPEAT loop		
Solution	is correct				

Alarm ID	COM-016	Alarm Title	absent 'END_REPEAT' keyword in REPEAT statement		
Description	If REPEAT loop doesn't have END_REPEAT to finish loop, this alarm v				
Description	be sent	be sent			
Possible	Drogrammi				
Cause	Programmi	Programming error			
Solution	Check MACRO program to confirm whether REPEAT loop has				
Solution	END_REPEAT				

Alarm ID	COM-017	Alarm Title	absent 'DO' keyword in WHILE statement			
Description	If WHILE lo	WHILE loop uses DO to define implement task incorrectly, this alarm				
Description	will appear					
Possible	Drogrammi					
Cause	Programmi	Programming error				
Solution	Check MAC	CRO program	to confirm whether WHILE loop uses DO			
Solution	correctly					

Alarm ID	COM-018	Alarm Title	absent 'END_WHILE' keyword in WHILE statement		
Description	If WHILE loop doesn't have END_WHILE to finish loop				
Possible	Drogrammi	Programming error			
Cause	Programm	Programming error			

Solution	check MACRO program to confirm whether WHILE loop has END_WHILE
	to end

Alarm ID	COM-019	Alarm Title	absent 'THEN' keyword in IF statement		
If IF uses THEN to define implement task incorrectly, system will s			e implement task incorrectly, system will send		
Description	this alarm	this alarm			
Possible	Drogrammi				
Cause	Programming error				
Solution	Check MACRO program to confirm whether IF loop use END correctly				

Alarm ID	COM-020	Alarm Title	absent 'END_IF' or 'ELSE' keyword in IF statement	
Description	If IF loop de	If IF loop doesn't have ELSE or END_IF, this alarm will appear		
Possible	Drogrammi	Programming error		
Cause	Programmi			
Solution	check whether IF loop uses ELSE or END_IF			

Alarm ID	COM-021	Alarm Title	absent 'END_IF' keyword in IF statement	
Description	If IF loop us	If IF loop uses END_IF to finish loop incorrectly, this alarm will appear		
Possible	Drogrammi	Programming error		
Cause	Programmi			
Solution	Check whether IF loop uses END_IF correctly			

Alarm ID	COM-022	Alarm Title	absent 'OF' keyword in CASE statement		
Description	If CASE con	If CASE command uses OF incorrectly, this alarm will appear			
Possible	Drogrammi				
Cause	Programmi	Programming error			
Solution	Check whether CASE command uses OF correctly				

Alarm ID	COM-023	Alarm Title	absent 'END_CASE' or 'ELSE' keyword in CASE statement
Description	If CASE command doesn't use ELSE or END_CASE		
Possible	Programming error		

Cause	
Solution	Check whether CASE loop uses ELSE or END_CASE correctly

Alarm ID	COM-024	Alarm Title	absent 'END_CASE' keyword in CASE statement	
Description	If CASE con	If CASE command doesn't have END_CASE keyword		
Possible	Drogrammi	Programming error		
Cause	Programm			
Solution	Ensure that END_CASE keyword is used before finishing CASE command			

Alarm ID	COM-025	Alarm Title	absent ':' or ',' delimiter in CASE statement	
Description	If CASE con	nmand in MA	CRO uses ';'or ', ', this alarm will appear.	
Possible	Programmi	Programming error		
Cause				
Solution	Check MACRO program. In CASE statement, ';'or ', ' is correct. However,			
	you should use ';' when finishing CASE command.			

Coordinate alarm:

Alarm ID	COR-001	Alarm title	Array Index must be Integer		
	When indire	When indirect variable is not an integer, the system will send this			
Description	alarm				
Description	Ex: if #1 in @[#1+1] command is not positive integral, this alarm will				
	appear				
Reason	Programming error.				
	Please check the machining program, the index in MACRO command				
Solution	has to be rounded				
	Ex: @[ROUND(#1)+1]				

Alarm ID	COR-002	Alarm title	File not found	
Description	If the file that the system wants to read does not exist			
	EX: Use M98 (or G65.G66etc.) to call a no existence file.			
Reason	Programming error.			
Solution	Check the machining program to make sure the existence of the file.			

Alarm ID	COR-003	Alarm title	Divide by zero		
_	If denominator in division of MACRO is equal to 0				
Description	Ex: If #3 in #1 :=(#2 / #3) command is equal to 0.				
Reason	Programming error				
Solution	Check the machining program to ensure that the denominator is not				
	equal to 0.	equal to 0.			

Alarm ID	COR-004	Alarm title	Operand domain error	
Description				
Reason	Programming error			
Solution	Please check the machining program.			

Alarm ID	COR-005	Alarm title	Program loading failure
Description	MACRO syntax error.		
Reason	Programming error		
Solution	Please check the machining program.		

Alarm ID	COR-006	Alarm title	Arc not on work plane		
	In G02 and O	In G02 and G03 syntax, if vector from center to starting point is not on			
Description	the arc of w	the arc of working plane, this alarm will appear.			
Description	Ex: G17 G02 I50. K10.; if it implements the left program, this alarm will				
	appear.				
Reason	Programming error				
	Check the machining program to ensure that G02 and G03 are used				
Solution	correctly.				

Alarm ID	COR-007	Alarm title	Arc radius too short		
Description	In G02 and G03 syntax, if Arc radius is smaller than 10 to the power of				
Description	minus 10 (10^-10), system will send this alarm				
Reason	Programming error				
Solution	Check the machining program to ensure that the Arc radius of G02 and				
	G03 are used correctly				

Alarm ID	COR-008	Alarm title	Arc destination not on arc	
	In G02 and G03 syntax, if the Arc end point coordinate is not on the			
	circle, system will send this alarm.			
	From V8.31	version, para	meter 3807- destination not on arc check	
	window is a	dded. It allow	vs error set in parameter 3807.	
Description	When error of Arc end point coordinate is smaller than setting value in			
	Pr3807, system will automatically correct center coordinate, so the			
	end point can be on arc correctly.			
	If error of Arc end point coordinate is bigger than setting value in			
	Pr3807, syst	em will send	alarm.	
Reason	Programmin	ig error		
Colution	Check the m	achining pro	gram to ensure that the Arc radius of G02 and	
Solution	G03 are used correctly			

Alarm ID	COR-009	Alarm title	Macro call too deep			
Description	Use G65 to call MACRO subprogram that has more than 12 layers					
Reason	Programming error					
Colution	Check machining program to ensure that G65 calls MACRO					
Solution	subprogram	subprogram that has less than 12 layers				

Alarm ID	COR-010	Alarm title	Modal macro call too deep	
Description	Use G66 to call MACRO subprogram that has more than 4 layers			
Reason	Programming error			
Solution	Check mach	Check machining program to ensure that G66 calls MACRO		
Solution	subprogram that has less than 4 layers			
Alarm ID	COR–011 Alarm title Subprogram call too deep			
Description	Use M98 to call subprogram that has more than 16 layers			
Reason	Programming error			
Solution	Check machining program to ensure that M98 calls subprogram that			
	has less than 16 layers			

Alarm ID	COR-012	Alarm title	Too many modal macro canel,G67		
_	G66 and G67 need to be used in pairs. When number of G67 is larger				
Description	than G66 in one machining program, this alarm will appear.				
Reason	Programming error				
Solution	Check program to ensure that G66 and G67 are used in pairs				

Alarm ID	COR-013	Alarm title	G65,G66 must be the last one in G code list		
	G65 and G66	G65 and G66 are MACRO, so in single block the right hand side of G65			
	and G66 will h	nave processi	ng arguments. So in single block, please put		
Description	other G code in the left hand side of G65 and G66.				
	If the right hand side of G65 and G66 has G code or M code, system				
	will send this alarm				
Reason	Programming error				
Solution	Please check	the machinin	g program.		

Alarm ID	COR-014	Alarm title	Absent program number		
Description	The right han	The right hand side of G65 and G66 doesn't have parameter P to			
Description	specify program number, system will send this alarm.				
Reason	Programming error				
Solution	Please check the machining program to ensure the use of G65 and				
	G66.				

Alarm ID	COR-015	Alarm title	Too many M code		
Description	There are mo	There are more than 3 M codes in a single block.			
Reason	Programming	Programming error			
Solution	Please check the machining program to ensure that there are equal or				
Solution	less than 3 M codes in a single block				
Alarm ID	COR-016	Alarm title	Illegal variable access		
Description	Accessing variables do not exist.				
Reason	Programming error				
Solution					

Alarm ID	COR-017	Alarm title	Label not found
Description	Cannot find out corresponding line number N in GOTO command		
Reason	Programming error		
Solution	Please check the machining program.		

Alarm ID	COR-019	Alarm title	sub program no M99
Description	Subprogram has no M99 to return main program		
Reason	Programming error		
Solution	Write M99 at the end of subprogram		

Alarm ID	COR-020	Alarm title	Too many G code
Description	There are more than 10 G codes in a single block.		
Reason	Programming error		
Solution	Dividing that single block into others single block that has less than		
	10G codes		

Alarm ID	COR-021	Alarm title	Too many (I,J,K) triples
Description	Repeat too much IJK command in the same single block.		
Reason	Programming error		
Solution	Please check the machining program.		

Alarm ID	COR-022	Alarm title	Use undefined workpiece coordinate
Description	Do not input G17, G18, G19		
Reason	Programming error		
Solution	Decide the working plane, and input G17, G18, or G19		

Alarm ID	COR-024	Alarm title	Invalid arc radius value		
	When implementing G02, G03, appointing Arc end point and given				
Description	radius is contradicted, given radius cannot meet appointing Arc end				
Description	point.				
	Ex: G03X1500Y4000R2000				
Reason	Programmir	ig error			

Solution Check the program and recalculate.

Alarm ID	COR-026	Alarm title	macro stack is empty	
Description	Empty stack	still has valu	e pop()	
Reason	The numbers of Push commands and Pop commands are not the			
	same.			
Solution	Check the program to ensure that the number of Push commands is			
	the same with that of Pop commands.			

Alarm ID	COR-027	Alarm title	Invalid macro arguments	
Description	Macro Alarm.			
Reason	Once Macro finds out the unreasonable situation, machining program			
	will be stopped and alarm will appear			
Solution	According to display content of alarm to find out where error is			

Alarm ID	COR-040	Alarm title	Block end point exceed software limit
Description	The coordinate in the program exceeds machine limit.		
Reason	Program error		
Solution	Check the machining program, and correct coordinate position		

Alarm ID	COR-041	Alarm title	GOTO label must be integer			
	The input GOTO label is not an integer.					
	Ex: GOTO 1	Ex: GOTO 1 Correct				
Description	GOTO 1. Wrong					
	N1; Correct					
	N1.; Wrong					
Reason	Program error					
Solution	Check the machining program, and input integer in GOTO label.					

Alarm ID	COR-043	Alarm title	ASIN()/ACOS() operand must between -1.0 and 1.0
Description	ASIN()/ACOS() Operand is not between -1.0 and 1.0.		
Reason	Programming error		

Solution Check the machining program.

Alarm ID	COR-044	Alarm title	SQRT() operand should not be negative	
Description	The square root of a negative value will be imaginary, but FBs-30GM			
Description	does not provide this function.			
Reason	Programming error			
Solution	Check the program; enter a positive value in SQRT operand.			

Alarm ID	COR-047	Alarm title	M address should be integer
Description	M address is not an integer.		
Reason	Programming error		
Solution	Check the program, and use M address in integer.		

Alarm ID	COR-052	Alarm title	Sub-program number, P, should be integer	
Description	If the sub-program number P is not an integer, FBs-30GM will send			
Description	this alarm.			
Reason	Programming error			
Solution	Please check the program, and use the sub-program number P in			
	integer.			

Alarm ID	COR-053	Alarm title	Repeat count, L, should be integer
Description	If the repeat times L is not an integer, this alarm will appear.		
Reason	Programming error		
Solution	Please check the program, and use the repetitive times L in integer.		

Alarm ID	COR-054	Alarm title	Incompatible data type		
Description	When the data format doesn't meet the requirements set by				
Description	FBs-30GM, FBs-30GM will send this alarm.				
Reason	Machining program is not compatible with FBs-30GM.				
Solution	Make sure that the data format is suitable for FBs-30GM.				
Alarm ID	COR-059	Alarm title	Subprogram call sequence num., H, must integer		
-------------	---------------	--	--	--	
Description	Number H c	Number H called in subprogram is not an integer			
Reason	Program error				
Solution	Change the	Change the number H of subprogram into an integer.			

Alarm ID	COR-060	Alarm title	M99 return sequence number, P, must integer
Description	The return sequence number P of M99 is not an integer.		
Reason	Program error		
Solution	Change the return sequence number P of M99 into an integer.		

Alarm ID	COR-064	Alarm title	P address must be integer
Description	If P address is not an integer, this alarm will be sent.		
Reason	Programming error		
Solution	Change P address into an integer.		

Alarm ID	COR-066	Alarm title	Inc. axis command and abs. axis command conflict	
Description	Both G91 and G90 are in the same line.			
Reason	Programming error			
Decide to use incremental or absolute command,		al or absolute command, and enter the		
Solution	correct command.			

Alarm ID	COR-067	Alarm title	Arc center vector and radius conflict	
The arc end point is not on the arc created by the arc st		on the arc created by the arc starting point		
Description	and the specify center.			
Reason	Programming error			
Solution	Please check the machining program.			

Alarm ID	COR-070	Alarm title	Invalid G Code
Description	Enter incorrect G code to FBs-30GM.		
Reason	Program error		
Solution	Enter the valid G-code.		

Alarm ID	COR-071	Alarm title	No main program assignment
Description	The name of main program is not specified.		
Reason	The program is not loaded.		
Solution	Specify the	name of mair	program.

Alarm ID	COR-075	Alarm title	Exact stop wait timeout		
	After 1 second	After 1 second sending Exact stop (G09/G61) command, If the			
Description	on difference between feedback and command exceeds allowable val				
	this alarm will be sent.				
Reason	Servo vibration				
Colution	1. Servo tun	ing			
Solution	2. Change p	arameters			

Alarm ID	COR-076	Alarm title	G04 dwell time cannot be negative
Description	When input value of dwell time G04 is negative, this alarm will appear.		
Reason	Program error		
Solution	Check the machining program, and enter a positive value to G04		

Alarm ID	COR-201	Alarm title	Part program file not exist
Description	When speci	fied program	does not exist, this alarm will appear.
Reason			
Solution	Ensure that	program file	exists

Alarm ID	COR-202	Alarm title	Communication link failure
Description	When communication link is dropped, FBs-30GM will send this alarm.		
Reason			
Solution	Reconnect a	good comm	unication link

Alarm ID	COR-204	Alarm title	File size too large
Description	When program file is too large, FBs-30GM will send this alarm		
Reason	Program error		
Solution	Reduce the program size, or split program into two subprograms.		

FATEK Automation Corporation

Alarm ID	COR-205	Alarm title	File content is empty	
Description	After FBs-30GM loads the program, it finds out that the file content is			
	null.			
Reason	Loading program error or CF card damaged			
Solution	Reload program or replace CF card			

Alarm ID	COR-207	Alarm title	Sequence number not found	
Description	When sequence number is not found, FBs-30GM will send this alarm.			
Reason	Program error			
Solution	Use sequence number in the program range.			